Statistical Learning and Inverse Problems: An Stochastic Gradient
Approach
- URL: http://arxiv.org/abs/2209.14967v2
- Date: Fri, 30 Sep 2022 03:06:12 GMT
- Title: Statistical Learning and Inverse Problems: An Stochastic Gradient
Approach
- Authors: Yuri R. Fonseca and Yuri F. Saporito
- Abstract summary: Inverse problems are paramount in Science and Engineering.
In this paper, we consider the setup of Statistical Inverse Problem (SIP) and demonstrate how Gradient Descent (SGD) algorithms can be used in the linear SIP setting.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inverse problems are paramount in Science and Engineering. In this paper, we
consider the setup of Statistical Inverse Problem (SIP) and demonstrate how
Stochastic Gradient Descent (SGD) algorithms can be used in the linear SIP
setting. We provide consistency and finite sample bounds for the excess risk.
We also propose a modification for the SGD algorithm where we leverage machine
learning methods to smooth the stochastic gradients and improve empirical
performance. We exemplify the algorithm in a setting of great interest
nowadays: the Functional Linear Regression model. In this case we consider a
synthetic data example and examples with a real data classification problem.
Related papers
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - On the Convergence of Loss and Uncertainty-based Active Learning Algorithms [3.506897386829711]
We investigate the convergence rates and data sample sizes required for training a machine learning model using a gradient descent (SGD) algorithm.
We present convergence results for linear classifiers and linearly separable datasets using squared hinge loss and similar training loss functions.
arXiv Detail & Related papers (2023-12-21T15:22:07Z) - Rigorous dynamical mean field theory for stochastic gradient descent
methods [17.90683687731009]
We prove closed-form equations for the exact high-dimensionals of a family of first order gradient-based methods.
This includes widely used algorithms such as gradient descent (SGD) or Nesterov acceleration.
arXiv Detail & Related papers (2022-10-12T21:10:55Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
Pairwise learning refers to learning tasks where the loss function depends on a pair instances.
Online descent (OGD) is a popular approach to handle streaming data in pairwise learning.
In this paper, we propose simple and online descent to methods for pairwise learning.
arXiv Detail & Related papers (2021-11-23T18:10:48Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Fast and Robust Online Inference with Stochastic Gradient Descent via
Random Scaling [0.9806910643086042]
We develop a new method of online inference for a vector of parameters estimated by the Polyak-Rtupper averaging procedure of gradient descent algorithms.
Our approach is fully operational with online data and is rigorously underpinned by a functional central limit theorem.
arXiv Detail & Related papers (2021-06-06T15:38:37Z) - Sinkhorn Natural Gradient for Generative Models [125.89871274202439]
We propose a novel Sinkhorn Natural Gradient (SiNG) algorithm which acts as a steepest descent method on the probability space endowed with the Sinkhorn divergence.
We show that the Sinkhorn information matrix (SIM), a key component of SiNG, has an explicit expression and can be evaluated accurately in complexity that scales logarithmically.
In our experiments, we quantitatively compare SiNG with state-of-the-art SGD-type solvers on generative tasks to demonstrate its efficiency and efficacy of our method.
arXiv Detail & Related papers (2020-11-09T02:51:17Z) - A spectral algorithm for robust regression with subgaussian rates [0.0]
We study a new linear up to quadratic time algorithm for linear regression in the absence of strong assumptions on the underlying distributions of samples.
The goal is to design a procedure which attains the optimal sub-gaussian error bound even though the data have only finite moments.
arXiv Detail & Related papers (2020-07-12T19:33:50Z) - Consistency analysis of bilevel data-driven learning in inverse problems [1.0705399532413618]
We consider the adaptive learning of the regularization parameter from data by means of optimization.
We demonstrate how to implement our framework on linear inverse problems.
Online numerical schemes are derived using the gradient descent method.
arXiv Detail & Related papers (2020-07-06T12:23:29Z) - Least Squares Regression with Markovian Data: Fundamental Limits and
Algorithms [69.45237691598774]
We study the problem of least squares linear regression where the data-points are dependent and are sampled from a Markov chain.
We establish sharp information theoretic minimax lower bounds for this problem in terms of $tau_mathsfmix$.
We propose an algorithm based on experience replay--a popular reinforcement learning technique--that achieves a significantly better error rate.
arXiv Detail & Related papers (2020-06-16T04:26:50Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
We develop a framework that yields statistical accuracy based on interplay between the deterministic convergence rate of the algorithm at the population level, and its degree of (instability) when applied to an empirical object based on $n$ samples.
We provide applications of our general results to several concrete classes of models, including Gaussian mixture estimation, non-linear regression models, and informative non-response models.
arXiv Detail & Related papers (2020-05-22T22:30:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.