Language-Family Adapters for Low-Resource Multilingual Neural Machine
Translation
- URL: http://arxiv.org/abs/2209.15236v3
- Date: Wed, 29 Mar 2023 18:37:22 GMT
- Title: Language-Family Adapters for Low-Resource Multilingual Neural Machine
Translation
- Authors: Alexandra Chronopoulou, Dario Stojanovski, Alexander Fraser
- Abstract summary: Large multilingual models trained with self-supervision achieve state-of-the-art results in a wide range of natural language processing tasks.
Multilingual fine-tuning improves performance on low-resource languages but requires modifying the entire model and can be prohibitively expensive.
We propose training language-family adapters on top of mBART-50 to facilitate cross-lingual transfer.
- Score: 129.99918589405675
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large multilingual models trained with self-supervision achieve
state-of-the-art results in a wide range of natural language processing tasks.
Self-supervised pretrained models are often fine-tuned on parallel data from
one or multiple language pairs for machine translation. Multilingual
fine-tuning improves performance on low-resource languages but requires
modifying the entire model and can be prohibitively expensive. Training a new
adapter on each language pair or training a single adapter on all language
pairs without updating the pretrained model has been proposed as a
parameter-efficient alternative. However, the former does not permit any
sharing between languages, while the latter shares parameters for all languages
and is susceptible to negative interference. In this paper, we propose training
language-family adapters on top of mBART-50 to facilitate cross-lingual
transfer. Our approach outperforms related baselines, yielding higher
translation scores on average when translating from English to 17 different
low-resource languages. We also show that language-family adapters provide an
effective method to translate to languages unseen during pretraining.
Related papers
- Targeted Multilingual Adaptation for Low-resource Language Families [17.212424929235624]
We study best practices for adapting a pre-trained model to a language family.
Our adapted models significantly outperform mono- and multilingual baselines.
Low-resource languages can be aggressively up-sampled during training at little detriment to performance in high-resource languages.
arXiv Detail & Related papers (2024-05-20T23:38:06Z) - LlamaTurk: Adapting Open-Source Generative Large Language Models for Low-Resource Language [2.9914612342004503]
This study explores an alternative solution by adapting large language models, primarily trained on English, to low-resource languages.
We assess various strategies, including continual training, instruction fine-tuning, task-specific fine-tuning, and vocabulary extension.
The results show that continual training improves language comprehension, as reflected in perplexity scores, and task-specific tuning generally enhances performance of downstream tasks.
arXiv Detail & Related papers (2024-05-13T13:41:59Z) - The Impact of Language Adapters in Cross-Lingual Transfer for NLU [0.8702432681310401]
We study the effect of including a target-language adapter in detailed ablation studies with two multilingual models and three multilingual datasets.
Our results show that the effect of target-language adapters is highly inconsistent across tasks, languages and models.
Removing the language adapter after training has only a weak negative effect, indicating that the language adapters do not have a strong impact on the predictions.
arXiv Detail & Related papers (2024-01-31T20:07:43Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - Continual Learning in Multilingual NMT via Language-Specific Embeddings [92.91823064720232]
It consists in replacing the shared vocabulary with a small language-specific vocabulary and fine-tuning the new embeddings on the new language's parallel data.
Because the parameters of the original model are not modified, its performance on the initial languages does not degrade.
arXiv Detail & Related papers (2021-10-20T10:38:57Z) - Efficient Test Time Adapter Ensembling for Low-resource Language
Varieties [115.12997212870962]
Specialized language and task adapters have been proposed to facilitate cross-lingual transfer of multilingual pretrained models.
An intuitive solution is to use a related language adapter for the new language variety, but we observe that this solution can lead to sub-optimal performance.
In this paper, we aim to improve the robustness of language adapters to uncovered languages without training new adapters.
arXiv Detail & Related papers (2021-09-10T13:44:46Z) - MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer [136.09386219006123]
We propose MAD-X, an adapter-based framework that enables high portability and parameter-efficient transfer to arbitrary tasks and languages.
MAD-X outperforms the state of the art in cross-lingual transfer across a representative set of typologically diverse languages on named entity recognition and causal commonsense reasoning.
arXiv Detail & Related papers (2020-04-30T18:54:43Z) - Balancing Training for Multilingual Neural Machine Translation [130.54253367251738]
multilingual machine translation (MT) models can translate to/from multiple languages.
Standard practice is to up-sample less resourced languages to increase representation.
We propose a method that instead automatically learns how to weight training data through a data scorer.
arXiv Detail & Related papers (2020-04-14T18:23:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.