Heterogeneous Graph Neural Network for Privacy-Preserving Recommendation
- URL: http://arxiv.org/abs/2210.00538v1
- Date: Sun, 2 Oct 2022 14:41:02 GMT
- Title: Heterogeneous Graph Neural Network for Privacy-Preserving Recommendation
- Authors: Yuecen Wei, Xingcheng Fu, Qingyun Sun, Hao Peng, Jia Wu, Jinyan Wang,
and Xianxian Li
- Abstract summary: Social networks are considered to be heterogeneous graph neural networks (HGNNs) with deep learning technological advances.
We propose a novel heterogeneous graph neural network privacy-preserving method based on a differential privacy mechanism named HeteDP.
- Score: 25.95411320126426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social networks are considered to be heterogeneous graph neural networks
(HGNNs) with deep learning technological advances. HGNNs, compared to
homogeneous data, absorb various aspects of information about individuals in
the training stage. That means more information has been covered in the
learning result, especially sensitive information. However, the
privacy-preserving methods on homogeneous graphs only preserve the same type of
node attributes or relationships, which cannot effectively work on
heterogeneous graphs due to the complexity. To address this issue, we propose a
novel heterogeneous graph neural network privacy-preserving method based on a
differential privacy mechanism named HeteDP, which provides a double guarantee
on graph features and topology. In particular, we first define a new attack
scheme to reveal privacy leakage in the heterogeneous graphs. Specifically, we
design a two-stage pipeline framework, which includes the privacy-preserving
feature encoder and the heterogeneous link reconstructor with gradients
perturbation based on differential privacy to tolerate data diversity and
against the attack. To better control the noise and promote model performance,
we utilize a bi-level optimization pattern to allocate a suitable privacy
budget for the above two modules. Our experiments on four public benchmarks
show that the HeteDP method is equipped to resist heterogeneous graph privacy
leakage with admirable model generalization.
Related papers
- Blink: Link Local Differential Privacy in Graph Neural Networks via
Bayesian Estimation [79.64626707978418]
We propose using link local differential privacy over decentralized nodes to train graph neural networks.
Our approach spends the privacy budget separately on links and degrees of the graph for the server to better denoise the graph topology.
Our approach outperforms existing methods in terms of accuracy under varying privacy budgets.
arXiv Detail & Related papers (2023-09-06T17:53:31Z) - Independent Distribution Regularization for Private Graph Embedding [55.24441467292359]
Graph embeddings are susceptible to attribute inference attacks, which allow attackers to infer private node attributes from the learned graph embeddings.
To address these concerns, privacy-preserving graph embedding methods have emerged.
We propose a novel approach called Private Variational Graph AutoEncoders (PVGAE) with the aid of independent distribution penalty as a regularization term.
arXiv Detail & Related papers (2023-08-16T13:32:43Z) - Differentially Private Decoupled Graph Convolutions for Multigranular
Topology Protection [38.96828804683783]
GNNs can inadvertently expose sensitive user information and interactions through their model predictions.
Applying standard DP approaches to GNNs directly is not advisable due to two main reasons.
We propose a new framework termed Graph Differential Privacy (GDP), specifically tailored to graph learning.
arXiv Detail & Related papers (2023-07-12T19:29:06Z) - Privacy-Preserved Neural Graph Similarity Learning [99.78599103903777]
We propose a novel Privacy-Preserving neural Graph Matching network model, named PPGM, for graph similarity learning.
To prevent reconstruction attacks, the proposed model does not communicate node-level representations between devices.
To alleviate the attacks to graph properties, the obfuscated features that contain information from both vectors are communicated.
arXiv Detail & Related papers (2022-10-21T04:38:25Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
We study model inversion attacks against Graph Neural Networks (GNNs)
In this paper, we present GraphMI to infer the private training graph data.
Our experimental results show that such defenses are not sufficiently effective and call for more advanced defenses against privacy attacks.
arXiv Detail & Related papers (2022-09-16T09:13:43Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - GAP: Differentially Private Graph Neural Networks with Aggregation
Perturbation [19.247325210343035]
Graph Neural Networks (GNNs) are powerful models designed for graph data that learn node representation.
Recent studies have shown that GNNs can raise significant privacy concerns when graph data contain sensitive information.
We propose GAP, a novel differentially private GNN that safeguards privacy of nodes and edges.
arXiv Detail & Related papers (2022-03-02T08:58:07Z) - Differentially Private Graph Classification with GNNs [5.830410490229634]
Graph Networks (GNNs) have established themselves as the state-of-the-art models for many machine learning applications.
We introduce differential privacy for graph-level classification, one of the key applications of machine learning on graphs.
We show results on a variety of synthetic and public datasets and evaluate the impact of different GNN architectures.
arXiv Detail & Related papers (2022-02-05T15:16:40Z) - Gromov-Wasserstein Discrepancy with Local Differential Privacy for
Distributed Structural Graphs [7.4398547397969494]
We propose a privacy-preserving framework to analyze the GW discrepancy of node embedding learned locally from graph neural networks.
Our experiments show that, with strong privacy protections guaranteed by the $varilon$-LDP algorithm, the proposed framework not only preserves privacy in graph learning but also presents a noised structural metric under GW distance.
arXiv Detail & Related papers (2022-02-01T23:32:33Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
We present textbfGraph textbfModel textbfInversion attack (GraphMI), which aims to extract private graph data of the training graph by inverting GNN.
Specifically, we propose a projected gradient module to tackle the discreteness of graph edges while preserving the sparsity and smoothness of graph features.
We design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.
arXiv Detail & Related papers (2021-06-05T07:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.