Does Wikidata Support Analogical Reasoning?
- URL: http://arxiv.org/abs/2210.00620v1
- Date: Sun, 2 Oct 2022 20:46:52 GMT
- Title: Does Wikidata Support Analogical Reasoning?
- Authors: Filip Ilievski, Jay Pujara and Kartik Shenoy
- Abstract summary: We investigate whether the knowledge in Wikidata supports analogical reasoning.
We show that Wikidata can be used to create data for analogy classification.
We devise a set of metrics to guide an automatic method for extracting analogies from Wikidata.
- Score: 17.68704739786042
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Analogical reasoning methods have been built over various resources,
including commonsense knowledge bases, lexical resources, language models, or
their combination. While the wide coverage of knowledge about entities and
events make Wikidata a promising resource for analogical reasoning across
situations and domains, Wikidata has not been employed for this task yet. In
this paper, we investigate whether the knowledge in Wikidata supports
analogical reasoning. Specifically, we study whether relational knowledge is
modeled consistently in Wikidata, observing that relevant relational
information is typically missing or modeled in an inconsistent way. Our further
experiments show that Wikidata can be used to create data for analogy
classification, but this requires much manual effort. To facilitate future work
that can support analogies, we discuss key desiderata, and devise a set of
metrics to guide an automatic method for extracting analogies from Wikidata.
Related papers
- Towards a Brazilian History Knowledge Graph [50.26735825937335]
We construct a knowledge graph for Brazilian history based on the Brazilian Dictionary of Historical Biographies (DHBB) and Wikipedia/Wikidata.
We show that many terms/entities described in the DHBB do not have corresponding concepts (or Q items) in Wikidata.
arXiv Detail & Related papers (2024-03-28T22:05:32Z) - KIF: A Wikidata-Based Framework for Integrating Heterogeneous Knowledge Sources [0.45141207783683707]
We present a Wikidata-based framework, called KIF, for virtually integrating heterogeneous knowledge sources.
KIF is written in Python and is released as open-source.
arXiv Detail & Related papers (2024-03-15T13:46:36Z) - WikiDes: A Wikipedia-Based Dataset for Generating Short Descriptions
from Paragraphs [66.88232442007062]
We introduce WikiDes, a dataset to generate short descriptions of Wikipedia articles.
The dataset consists of over 80k English samples on 6987 topics.
Our paper shows a practical impact on Wikipedia and Wikidata since there are thousands of missing descriptions.
arXiv Detail & Related papers (2022-09-27T01:28:02Z) - Enriching Wikidata with Linked Open Data [4.311189028205597]
Current linked open data (LOD) tools are not suitable to enrich large graphs like Wikidata.
We present a novel workflow that includes gap detection, source selection, schema alignment, and semantic validation.
Our experiments show that our workflow can enrich Wikidata with millions of novel statements from external LOD sources with a high quality.
arXiv Detail & Related papers (2022-07-01T01:50:24Z) - Improving Candidate Retrieval with Entity Profile Generation for
Wikidata Entity Linking [76.00737707718795]
We propose a novel candidate retrieval paradigm based on entity profiling.
We use the profile to query the indexed search engine to retrieve candidate entities.
Our approach complements the traditional approach of using a Wikipedia anchor-text dictionary.
arXiv Detail & Related papers (2022-02-27T17:38:53Z) - Survey on English Entity Linking on Wikidata [3.8289963781051415]
Wikidata is a frequently updated, community-driven, and multilingual knowledge graph.
Current Wikidata-specific Entity Linking datasets do not differ in their annotation scheme from schemes for other knowledge graphs like DBpedia.
Almost all approaches employ specific properties like labels and sometimes descriptions but ignore characteristics such as the hyper-relational structure.
arXiv Detail & Related papers (2021-12-03T16:02:42Z) - Open Domain Question Answering over Virtual Documents: A Unified
Approach for Data and Text [62.489652395307914]
We use the data-to-text method as a means for encoding structured knowledge for knowledge-intensive applications, i.e. open-domain question answering (QA)
Specifically, we propose a verbalizer-retriever-reader framework for open-domain QA over data and text where verbalized tables from Wikipedia and triples from Wikidata are used as augmented knowledge sources.
We show that our Unified Data and Text QA, UDT-QA, can effectively benefit from the expanded knowledge index, leading to large gains over text-only baselines.
arXiv Detail & Related papers (2021-10-16T00:11:21Z) - Assessing the quality of sources in Wikidata across languages: a hybrid
approach [64.05097584373979]
We run a series of microtasks experiments to evaluate a large corpus of references, sampled from Wikidata triples with labels in several languages.
We use a consolidated, curated version of the crowdsourced assessments to train several machine learning models to scale up the analysis to the whole of Wikidata.
The findings help us ascertain the quality of references in Wikidata, and identify common challenges in defining and capturing the quality of user-generated multilingual structured data on the web.
arXiv Detail & Related papers (2021-09-20T10:06:46Z) - Commonsense Knowledge in Wikidata [3.8359194344969807]
This paper investigates whether Wikidata con-tains commonsense knowledge which is complementary to existing commonsense sources.
We map the relations of Wikidata to ConceptNet, which we also leverage to integrate Wikidata-CS into an existing consolidated commonsense graph.
arXiv Detail & Related papers (2020-08-18T18:23:06Z) - Wikidata on MARS [0.20305676256390934]
Multi-attributed relational structures (MARSs) have been proposed as a formal data model for generalized property graphs.
MARPL is a useful rule-based logic in which to write inference rules over property graphs.
Wikidata can be modelled in an extended MARS that adds the (imprecise) datatypes of Wikidata.
arXiv Detail & Related papers (2020-08-14T22:58:04Z) - Inferential Text Generation with Multiple Knowledge Sources and
Meta-Learning [117.23425857240679]
We study the problem of generating inferential texts of events for a variety of commonsense like textitif-else relations.
Existing approaches typically use limited evidence from training examples and learn for each relation individually.
In this work, we use multiple knowledge sources as fuels for the model.
arXiv Detail & Related papers (2020-04-07T01:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.