Smooth image-to-image translations with latent space interpolations
- URL: http://arxiv.org/abs/2210.00841v1
- Date: Mon, 3 Oct 2022 11:57:30 GMT
- Title: Smooth image-to-image translations with latent space interpolations
- Authors: Yahui Liu, Enver Sangineto, Yajing Chen, Linchao Bao, Haoxian Zhang,
Nicu Sebe, Bruno Lepri and Marco De Nadai
- Abstract summary: Multi-domain image-to-image (I2I) translations can transform a source image according to the style of a target domain.
We show that our regularization techniques can improve the state-of-the-art I2I translations by a large margin.
- Score: 64.8170758294427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-domain image-to-image (I2I) translations can transform a source image
according to the style of a target domain. One important, desired
characteristic of these transformations, is their graduality, which corresponds
to a smooth change between the source and the target image when their
respective latent-space representations are linearly interpolated. However,
state-of-the-art methods usually perform poorly when evaluated using
inter-domain interpolations, often producing abrupt changes in the appearance
or non-realistic intermediate images. In this paper, we argue that one of the
main reasons behind this problem is the lack of sufficient inter-domain
training data and we propose two different regularization methods to alleviate
this issue: a new shrinkage loss, which compacts the latent space, and a Mixup
data-augmentation strategy, which flattens the style representations between
domains. We also propose a new metric to quantitatively evaluate the degree of
the interpolation smoothness, an aspect which is not sufficiently covered by
the existing I2I translation metrics. Using both our proposed metric and
standard evaluation protocols, we show that our regularization techniques can
improve the state-of-the-art multi-domain I2I translations by a large margin.
Our code will be made publicly available upon the acceptance of this article.
Related papers
- Unsupervised Domain Adaptation for Semantic Segmentation using One-shot
Image-to-Image Translation via Latent Representation Mixing [9.118706387430883]
We propose a new unsupervised domain adaptation method for the semantic segmentation of very high resolution images.
An image-to-image translation paradigm is proposed, based on an encoder-decoder principle where latent content representations are mixed across domains.
Cross-city comparative experiments have shown that the proposed method outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2022-12-07T18:16:17Z) - Marginal Contrastive Correspondence for Guided Image Generation [58.0605433671196]
Exemplar-based image translation establishes dense correspondences between a conditional input and an exemplar from two different domains.
Existing work builds the cross-domain correspondences implicitly by minimizing feature-wise distances across the two domains.
We design a Marginal Contrastive Learning Network (MCL-Net) that explores contrastive learning to learn domain-invariant features for realistic exemplar-based image translation.
arXiv Detail & Related papers (2022-04-01T13:55:44Z) - Multi-domain Unsupervised Image-to-Image Translation with Appearance
Adaptive Convolution [62.4972011636884]
We propose a novel multi-domain unsupervised image-to-image translation (MDUIT) framework.
We exploit the decomposed content feature and appearance adaptive convolution to translate an image into a target appearance.
We show that the proposed method produces visually diverse and plausible results in multiple domains compared to the state-of-the-art methods.
arXiv Detail & Related papers (2022-02-06T14:12:34Z) - Smoothing the Disentangled Latent Style Space for Unsupervised
Image-to-Image Translation [56.55178339375146]
Image-to-Image (I2I) multi-domain translation models are usually evaluated also using the quality of their semantic results.
We propose a new training protocol based on three specific losses which help a translation network to learn a smooth and disentangled latent style space.
arXiv Detail & Related papers (2021-06-16T17:58:21Z) - The Spatially-Correlative Loss for Various Image Translation Tasks [69.62228639870114]
We propose a novel spatially-correlative loss that is simple, efficient and yet effective for preserving scene structure consistency.
Previous methods attempt this by using pixel-level cycle-consistency or feature-level matching losses.
We show distinct improvement over baseline models in all three modes of unpaired I2I translation: single-modal, multi-modal, and even single-image translation.
arXiv Detail & Related papers (2021-04-02T02:13:30Z) - Label-Driven Reconstruction for Domain Adaptation in Semantic
Segmentation [43.09068177612067]
Unsupervised domain adaptation enables to alleviate the need for pixel-wise annotation in the semantic segmentation.
One of the most common strategies is to translate images from the source domain to the target domain and then align their marginal distributions in the feature space using adversarial learning.
Here, we present an innovative framework, designed to mitigate the image translation bias and align cross-domain features with the same category.
arXiv Detail & Related papers (2020-03-10T10:06:35Z) - CrDoCo: Pixel-level Domain Transfer with Cross-Domain Consistency [119.45667331836583]
Unsupervised domain adaptation algorithms aim to transfer the knowledge learned from one domain to another.
We present a novel pixel-wise adversarial domain adaptation algorithm.
arXiv Detail & Related papers (2020-01-09T19:00:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.