Randomized ancillary qubit overcomes detector-control and
intercept-resend hacking of quantum key distribution
- URL: http://arxiv.org/abs/2210.01204v1
- Date: Mon, 3 Oct 2022 19:44:35 GMT
- Title: Randomized ancillary qubit overcomes detector-control and
intercept-resend hacking of quantum key distribution
- Authors: Salem F. Hegazy, Salah S. A. Obayya, and Bahaa E. A. Saleh
- Abstract summary: General class of attacks adopting the use of faked-state photons.
A legitimate user, Bob, uses a polarization randomizer at his gateway to distort an ancillary polarization of a phase-encoded photon.
We demonstrate theoretically and experimentally that, using commercial off-the-shelf detectors, it can be made impossible for Eve to avoid triggering the alert.
- Score: 1.0323063834827415
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Practical implementations of quantum key distribution (QKD) have been shown
to be subject to various detector side-channel attacks that compromise the
promised unconditional security. Most notable is a general class of attacks
adopting the use of faked-state photons as in the detector-control and, more
broadly, the intercept-resend attacks. In this paper, we present a simple
scheme to overcome such class of attacks: A legitimate user, Bob, uses a
polarization randomizer at his gateway to distort an ancillary polarization of
a phase-encoded photon in a bidirectional QKD configuration. Passing through
the randomizer once on the way to his partner, Alice, and again in the opposite
direction, the polarization qubit of the genuine photon is immune to
randomization. However, the polarization state of a photon from an intruder,
Eve, to Bob is randomized and hence directed to a detector in a different path,
whereupon it triggers an alert. We demonstrate theoretically and experimentally
that, using commercial off-the-shelf detectors, it can be made impossible for
Eve to avoid triggering the alert, no matter what faked-state of light she
uses.
Related papers
- Automated verification of countermeasure against detector-control attack
in quantum key distribution [0.0]
Attacks that control single-photon detectors in quantum key distribution are capable of eavesdropping the secret key.
We report an automated testbench that checks the detector's vulnerabilities against these attacks.
arXiv Detail & Related papers (2023-05-29T21:08:08Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - Source-independent quantum random number generator against tailored
detector blinding attacks [6.86599501487994]
We propose a quantum random number generation protocol that addresses source vulnerability and ferocious detector blinding attacks.
We experimentally demonstrate the ability of our protocol to generate random numbers for two-dimensional measurement with a generation speed of 0.1 bit per pulse.
arXiv Detail & Related papers (2022-04-26T08:47:37Z) - An Enhanced Photonic Quantum Finite Automaton [52.77024349608834]
We have described an optical implementation of a measure-once one-way quantum finite automaton recognizing a well-known family of unary periodic languages.
To process input words, the automaton exploits the degree of polarization of single photons and, to reduce the acceptance error probability, a technique of confidence amplification using the photon counts is implemented.
arXiv Detail & Related papers (2021-09-21T11:14:26Z) - Single photon randomness originating from the symmetry of dipole
emission and the unpredictability of spontaneous emission [55.41644538483948]
Quantum random number generation is a key ingredient for quantum cryptography and fundamental quantum optics.
We experimentally demonstrate quantum random number generation based on the spontaneous emission process.
The scheme can be extended to random number generation by coherent single photons with potential applications in solid-state based quantum communication at room temperature.
arXiv Detail & Related papers (2021-02-18T14:07:20Z) - A generalized efficiency mismatch attack to bypass detection-scrambling
countermeasure [0.0]
We show that the proposed countermeasure can be bypassed if the attack is generalized by including more attack variables.
Our result and methodology could be used to security-certify a free-space quantum communication receiver against all types of detector-efficiency-mismatch type attacks.
arXiv Detail & Related papers (2021-01-07T05:02:24Z) - Detector blinding attacks on counterfactual quantum key distribution [0.0]
Counterfactual quantum key distribution protocols allow two sides to establish a common secret key.
Part of the quantum state used to establish each bit never leaves the transmitting side, which hinders some attacks.
We present two attacks that use this ability to compromise the security of counterfactual quantum key distribution.
arXiv Detail & Related papers (2020-11-05T07:41:39Z) - Anomaly Detection-Based Unknown Face Presentation Attack Detection [74.4918294453537]
Anomaly detection-based spoof attack detection is a recent development in face Presentation Attack Detection.
In this paper, we present a deep-learning solution for anomaly detection-based spoof attack detection.
The proposed approach benefits from the representation learning power of the CNNs and learns better features for fPAD task.
arXiv Detail & Related papers (2020-07-11T21:20:55Z) - Security proof of practical quantum key distribution with
detection-efficiency mismatch [3.1988884923120313]
We develop a method that allows to provide security proofs without the usual assumption.
Our method can take the detection-efficiency mismatch into account without having to restrict the attack strategy of the adversary.
Our method also shows that in the absence of efficiency mismatch in our detector model, the key rate increases if the loss due to detection inefficiency is assumed to be outside of the adversary's control.
arXiv Detail & Related papers (2020-04-09T06:49:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.