And what if two musical versions don't share melody, harmony, rhythm, or
lyrics ?
- URL: http://arxiv.org/abs/2210.01256v1
- Date: Mon, 3 Oct 2022 22:33:14 GMT
- Title: And what if two musical versions don't share melody, harmony, rhythm, or
lyrics ?
- Authors: Mathilde Abrassart and Guillaume Doras
- Abstract summary: We show that an approximated representation of the lyrics is an efficient proxy to discriminate between versions and non-versions.
We then describe how these features complement each other and yield new state-of-the-art performances on two publicly available datasets.
- Score: 2.4366811507669124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Version identification (VI) has seen substantial progress over the past few
years. On the one hand, the introduction of the metric learning paradigm has
favored the emergence of scalable yet accurate VI systems. On the other hand,
using features focusing on specific aspects of musical pieces, such as melody,
harmony, or lyrics, yielded interpretable and promising performances. In this
work, we build upon these recent advances and propose a metric learning-based
system systematically leveraging four dimensions commonly admitted to convey
musical similarity between versions: melodic line, harmonic structure, rhythmic
patterns, and lyrics. We describe our deliberately simple model architecture,
and we show in particular that an approximated representation of the lyrics is
an efficient proxy to discriminate between versions and non-versions. We then
describe how these features complement each other and yield new
state-of-the-art performances on two publicly available datasets. We finally
suggest that a VI system using a combination of melodic, harmonic, rhythmic and
lyrics features could theoretically reach the optimal performances obtainable
on these datasets.
Related papers
- Graph-based Polyphonic Multitrack Music Generation [9.701208207491879]
This paper introduces a novel graph representation for music and a deep Variational Autoencoder that generates the structure and the content of musical graphs separately.
By separating the structure and content of musical graphs, it is possible to condition generation by specifying which instruments are played at certain times.
arXiv Detail & Related papers (2023-07-27T15:18:50Z) - Unsupervised Melody-to-Lyric Generation [91.29447272400826]
We propose a method for generating high-quality lyrics without training on any aligned melody-lyric data.
We leverage the segmentation and rhythm alignment between melody and lyrics to compile the given melody into decoding constraints.
Our model can generate high-quality lyrics that are more on-topic, singable, intelligible, and coherent than strong baselines.
arXiv Detail & Related papers (2023-05-30T17:20:25Z) - Re-creation of Creations: A New Paradigm for Lyric-to-Melody Generation [158.54649047794794]
Re-creation of Creations (ROC) is a new paradigm for lyric-to-melody generation.
ROC achieves good lyric-melody feature alignment in lyric-to-melody generation.
arXiv Detail & Related papers (2022-08-11T08:44:47Z) - Towards Context-Aware Neural Performance-Score Synchronisation [2.0305676256390934]
Music synchronisation provides a way to navigate among multiple representations of music in a unified manner.
Traditional synchronisation methods compute alignment using knowledge-driven and performance analysis approaches.
This PhD furthers the development of performance-score synchronisation research by proposing data-driven, context-aware alignment approaches.
arXiv Detail & Related papers (2022-05-31T16:45:25Z) - Quantized GAN for Complex Music Generation from Dance Videos [48.196705493763986]
We present Dance2Music-GAN (D2M-GAN), a novel adversarial multi-modal framework that generates musical samples conditioned on dance videos.
Our proposed framework takes dance video frames and human body motion as input, and learns to generate music samples that plausibly accompany the corresponding input.
arXiv Detail & Related papers (2022-04-01T17:53:39Z) - A-Muze-Net: Music Generation by Composing the Harmony based on the
Generated Melody [91.22679787578438]
We present a method for the generation of Midi files of piano music.
The method models the right and left hands using two networks, where the left hand is conditioned on the right hand.
The Midi is represented in a way that is invariant to the musical scale, and the melody is represented, for the purpose of conditioning the harmony.
arXiv Detail & Related papers (2021-11-25T09:45:53Z) - Melody-Conditioned Lyrics Generation with SeqGANs [81.2302502902865]
We propose an end-to-end melody-conditioned lyrics generation system based on Sequence Generative Adversarial Networks (SeqGAN)
We show that the input conditions have no negative impact on the evaluation metrics while enabling the network to produce more meaningful results.
arXiv Detail & Related papers (2020-10-28T02:35:40Z) - Music Gesture for Visual Sound Separation [121.36275456396075]
"Music Gesture" is a keypoint-based structured representation to explicitly model the body and finger movements of musicians when they perform music.
We first adopt a context-aware graph network to integrate visual semantic context with body dynamics, and then apply an audio-visual fusion model to associate body movements with the corresponding audio signals.
arXiv Detail & Related papers (2020-04-20T17:53:46Z) - Continuous Melody Generation via Disentangled Short-Term Representations
and Structural Conditions [14.786601824794369]
We present a model for composing melodies given a user specified symbolic scenario combined with a previous music context.
Our model is capable of generating long melodies by regarding 8-beat note sequences as basic units, and shares consistent rhythm pattern structure with another specific song.
Results show that the music generated by our model tends to have salient repetition structures, rich motives, and stable rhythm patterns.
arXiv Detail & Related papers (2020-02-05T06:23:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.