Optomechanical sideband asymmetry explained by stochastic
electrodynamics
- URL: http://arxiv.org/abs/2210.01486v1
- Date: Tue, 4 Oct 2022 09:30:45 GMT
- Title: Optomechanical sideband asymmetry explained by stochastic
electrodynamics
- Authors: Lukas Novotny, Martin Frimmer, Andrei Militaru, Andreas Norrman, Oriol
Romero-Isart, Patrick Maurer
- Abstract summary: We study the noise spectrum of a laser beam reflected from a suspended mirror.
The electromagnetic field follows Maxwell's equations and is described by a deterministic part.
The mirror motion satisfies Newton's equation of motion and is composed of deterministic and parts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Within the framework of stochastic electrodynamics we derive the noise
spectrum of a laser beam reflected from a suspended mirror. The electromagnetic
field follows Maxwell's equations and is described by a deterministic part that
accounts for the laser field and a stochastic part that accounts for thermal
and zero-point background fluctuations.Likewise, the mirror motion satisfies
Newton's equation of motion and is composed of deterministic and stochastic
parts, similar to a Langevin equation. We consider a photodetector that records
the power of the field reflected from the mirror interfering with a
frequency-shifted reference beam (heterodyne interferometry). We theoretically
show that the power spectral density of the photodetector signal is composed of
four parts: (i) a deterministic term with beat notes, (ii) shot noise, (iii)
the actual heterodyne signal of the mirror motion and (iv) a cross term
resulting from the correlation between measurement noise (shot noise) and
backaction noise (radiation pressure shot noise). The latter gives rise to the
Raman sideband asymmetry observed with ultracold atoms, cavity optomechanics
and with levitated nanoparticles. Our classical theory fully reproduces
experimental observations and agrees with the results obtained by a quantum
theoretical treatment.
Related papers
- Microwave-Optical Entanglement from Pulse-pumped Electro-optomechanics [1.9672172405344497]
Entangling microwave and optical photons is one of the promising ways to realize quantum transduction through quantum teleportation.
This paper investigates the entanglement of microwave-optical photon pairs generated from an electro-optomechanical system driven by a blue-detuned pulsed Gaussian pump.
arXiv Detail & Related papers (2024-07-26T22:13:54Z) - Wave-particle correlations in multiphoton resonances of coherent
light-matter interaction [0.0]
We discuss the conditional measurement of field amplitudes by a nonclassical photon sequence in the Jaynes-Cummings (JC) model under multiphoton operation.
arXiv Detail & Related papers (2024-02-14T16:51:54Z) - Probing Electromagnetic Nonreciprocity with Quantum Geometry of Photonic
States [0.0]
We propose a contact-less detection using a cross-cavity device where a material of interest is placed at its centre.
We show that the optical properties of the material, such as Kerr and Faraday rotation, manifest in the coupling between the cavities' electromagnetic modes and in the shift of their resonant frequencies.
Our approach is expected to be applicable across a broad spectrum of experimental platforms including Fock states in optical cavities, or, coherent states in microwave and THz resonators.
arXiv Detail & Related papers (2023-10-24T20:37:09Z) - Noise and dissipation on a moving mirror induced by the dynamical
Casimir emission [0.0]
We adopt an open quantum system approach to study the dynamics of a moving mirror.
We derive the master equation governing the mechanical motion of the mirror.
We show that the noise and dissipation kernels, that enter in the definition of the time-dependent coefficients of the master equation, are related by fluctuation-dissipation relations.
arXiv Detail & Related papers (2023-06-06T16:01:04Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Quantum optomechanical system in a Mach-Zehnder interferometer [0.0]
We show that squeezed light can be generated by pure scattering on a quantum system, without involving a cavity.
The squeezing can be detected at the output ports of the interferometer either by direct detection or by measuring the spectrum of the difference current.
arXiv Detail & Related papers (2021-01-22T09:17:34Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z) - Optical Magnetometer: Quantum Resonances at pumping repetition rate of
1/n of the Larmor frequency [58.720142291102135]
Quantum sub-resonances at a repetition rate of $1/n$ of the Larmor frequency of the magnetic field inside the shield are experimentally observed and theoretically explained.
Investigations in single alkali atoms cells as well as mixed alkali atoms of K and Rb are presented.
arXiv Detail & Related papers (2020-02-20T09:14:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.