MetaTrader: An Reinforcement Learning Approach Integrating Diverse
Policies for Portfolio Optimization
- URL: http://arxiv.org/abs/2210.01774v1
- Date: Thu, 1 Sep 2022 07:58:06 GMT
- Title: MetaTrader: An Reinforcement Learning Approach Integrating Diverse
Policies for Portfolio Optimization
- Authors: Hui Niu, Siyuan Li, Jian Li
- Abstract summary: We propose a novel two-stage-based approach for portfolio management.
In the first stage, incorporates an imitation learning into the reinforcement learning framework.
In the second stage, learns a meta-policy to recognize the market conditions and decide on the most proper learned policy to follow.
- Score: 17.759687104376855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Portfolio management is a fundamental problem in finance. It involves
periodic reallocations of assets to maximize the expected returns within an
appropriate level of risk exposure. Deep reinforcement learning (RL) has been
considered a promising approach to solving this problem owing to its strong
capability in sequential decision making. However, due to the non-stationary
nature of financial markets, applying RL techniques to portfolio optimization
remains a challenging problem. Extracting trading knowledge from various expert
strategies could be helpful for agents to accommodate the changing markets. In
this paper, we propose MetaTrader, a novel two-stage RL-based approach for
portfolio management, which learns to integrate diverse trading policies to
adapt to various market conditions. In the first stage, MetaTrader incorporates
an imitation learning objective into the reinforcement learning framework.
Through imitating different expert demonstrations, MetaTrader acquires a set of
trading policies with great diversity. In the second stage, MetaTrader learns a
meta-policy to recognize the market conditions and decide on the most proper
learned policy to follow. We evaluate the proposed approach on three real-world
index datasets and compare it to state-of-the-art baselines. The empirical
results demonstrate that MetaTrader significantly outperforms those baselines
in balancing profits and risks. Furthermore, thorough ablation studies validate
the effectiveness of the components in the proposed approach.
Related papers
- Automate Strategy Finding with LLM in Quant investment [4.46212317245124]
We propose a novel framework for quantitative stock investment in portfolio management and alpha mining.
This paper proposes a framework where large language models (LLMs) mine alpha factors from multimodal financial data.
Experiments on the Chinese stock markets demonstrate that this framework significantly outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-09-10T07:42:28Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - IMM: An Imitative Reinforcement Learning Approach with Predictive
Representation Learning for Automatic Market Making [33.23156884634365]
Reinforcement Learning technology has achieved remarkable success in quantitative trading.
Most existing RL-based market making methods focus on optimizing single-price level strategies.
We propose Imitative Market Maker (IMM), a novel RL framework leveraging both knowledge from suboptimal signal-based experts and direct policy interactions.
arXiv Detail & Related papers (2023-08-17T11:04:09Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - Asset Allocation: From Markowitz to Deep Reinforcement Learning [2.0305676256390934]
Asset allocation is an investment strategy that aims to balance risk and reward by constantly redistributing the portfolio's assets.
We conduct an extensive benchmark study to determine the efficacy and reliability of a number of optimization techniques.
arXiv Detail & Related papers (2022-07-14T14:44:04Z) - Quantitative Stock Investment by Routing Uncertainty-Aware Trading
Experts: A Multi-Task Learning Approach [29.706515133374193]
We show that existing deep learning methods are sensitive to random seeds and network routers.
We propose a novel two-stage mixture-of-experts (MoE) framework for quantitative investment to mimic the efficient bottom-up trading strategy design workflow of successful trading firms.
AlphaMix significantly outperforms many state-of-the-art baselines in terms of four financial criteria.
arXiv Detail & Related papers (2022-06-07T08:58:00Z) - Model-Based Offline Meta-Reinforcement Learning with Regularization [63.35040401948943]
offline Meta-RL is emerging as a promising approach to address these challenges.
MerPO learns a meta-model for efficient task structure inference and an informative meta-policy.
We show that MerPO offers guaranteed improvement over both the behavior policy and the meta-policy.
arXiv Detail & Related papers (2022-02-07T04:15:20Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
This paper focuses precisely on the study of these markets makers strategies from an agent-based perspective.
We propose the application of Reinforcement Learning (RL) for the creation of intelligent market markers in simulated stock markets.
arXiv Detail & Related papers (2021-12-08T14:55:21Z) - Universal Trading for Order Execution with Oracle Policy Distillation [99.57416828489568]
We propose a novel universal trading policy optimization framework to bridge the gap between the noisy yet imperfect market states and the optimal action sequences for order execution.
We show that our framework can better guide the learning of the common policy towards practically optimal execution by an oracle teacher with perfect information.
arXiv Detail & Related papers (2021-01-28T05:52:18Z) - Time your hedge with Deep Reinforcement Learning [0.0]
Deep Reinforcement Learning (DRL) can tackle this challenge by creating a dynamic dependency between market information and hedging strategies allocation decisions.
We present a realistic and augmented DRL framework that: (i) uses additional contextual information to decide an action, (ii) has a one period lag between observations and actions to account for one day lag turnover of common asset managers to rebalance their hedge, (iii) is fully tested in terms of stability and robustness thanks to a repetitive train test method called anchored walk forward training, similar in spirit to k fold cross validation for time series and (iv) allows managing leverage of our hedging
arXiv Detail & Related papers (2020-09-16T06:43:41Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
Portfolio management (PM) aims to achieve investment goals such as maximal profits or minimal risks.
In this paper, we propose SARL, a novel State-Augmented RL framework for PM.
Our framework aims to address two unique challenges in financial PM: (1) data Heterogeneous data -- the collected information for each asset is usually diverse, noisy and imbalanced (e.g., news articles); and (2) environment uncertainty -- the financial market is versatile and non-stationary.
arXiv Detail & Related papers (2020-02-09T08:10:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.