Decanus to Legatus: Synthetic training for 2D-3D human pose lifting
- URL: http://arxiv.org/abs/2210.02231v1
- Date: Wed, 5 Oct 2022 13:10:19 GMT
- Title: Decanus to Legatus: Synthetic training for 2D-3D human pose lifting
- Authors: Yue Zhu, David Picard
- Abstract summary: We propose an algorithm to generate infinite 3D synthetic human poses (Legatus) from a 3D pose distribution based on 10 initial handcrafted 3D poses (Decanus)
Our results show that we can achieve 3D pose estimation performance comparable to methods using real data from specialized datasets but in a zero-shot setup, showing the potential of our framework.
- Score: 26.108023246654646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D human pose estimation is a challenging task because of the difficulty to
acquire ground-truth data outside of controlled environments. A number of
further issues have been hindering progress in building a universal and robust
model for this task, including domain gaps between different datasets, unseen
actions between train and test datasets, various hardware settings and high
cost of annotation, etc. In this paper, we propose an algorithm to generate
infinite 3D synthetic human poses (Legatus) from a 3D pose distribution based
on 10 initial handcrafted 3D poses (Decanus) during the training of a 2D to 3D
human pose lifter neural network. Our results show that we can achieve 3D pose
estimation performance comparable to methods using real data from specialized
datasets but in a zero-shot setup, showing the generalization potential of our
framework.
Related papers
- FAMOUS: High-Fidelity Monocular 3D Human Digitization Using View Synthesis [51.193297565630886]
The challenge of accurately inferring texture remains, particularly in obscured areas such as the back of a person in frontal-view images.
This limitation in texture prediction largely stems from the scarcity of large-scale and diverse 3D datasets.
We propose leveraging extensive 2D fashion datasets to enhance both texture and shape prediction in 3D human digitization.
arXiv Detail & Related papers (2024-10-13T01:25:05Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
We introduce a novel universal 3D pre-training framework designed to facilitate the acquisition of efficient 3D representation.
For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks, implying its effectiveness.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - Adapted Human Pose: Monocular 3D Human Pose Estimation with Zero Real 3D
Pose Data [14.719976311208502]
Training vs. test data domain gaps often negatively affect model performance.
We present our adapted human pose (AHuP) approach that addresses adaptation problems in both appearance and pose spaces.
AHuP is built around a practical assumption that in real applications, data from target domain could be inaccessible or only limited information can be acquired.
arXiv Detail & Related papers (2021-05-23T01:20:40Z) - Learning Transferable Kinematic Dictionary for 3D Human Pose and Shape
Reconstruction [15.586347115568973]
We propose a kinematic dictionary, which explicitly regularizes the solution space of relative 3D rotations of human joints.
Our method achieves end-to-end 3D reconstruction without the need of using any shape annotations during the training of neural networks.
The proposed method achieves competitive results on large-scale datasets including Human3.6M, MPI-INF-3DHP, and LSP.
arXiv Detail & Related papers (2021-04-02T09:24:29Z) - Synthetic Training for Monocular Human Mesh Recovery [100.38109761268639]
This paper aims to estimate 3D mesh of multiple body parts with large-scale differences from a single RGB image.
The main challenge is lacking training data that have complete 3D annotations of all body parts in 2D images.
We propose a depth-to-scale (D2S) projection to incorporate the depth difference into the projection function to derive per-joint scale variants.
arXiv Detail & Related papers (2020-10-27T03:31:35Z) - Cascaded deep monocular 3D human pose estimation with evolutionary
training data [76.3478675752847]
Deep representation learning has achieved remarkable accuracy for monocular 3D human pose estimation.
This paper proposes a novel data augmentation method that is scalable for massive amount of training data.
Our method synthesizes unseen 3D human skeletons based on a hierarchical human representation and synthesizings inspired by prior knowledge.
arXiv Detail & Related papers (2020-06-14T03:09:52Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
We propose a self-supervised learning framework to disentangle variations from unlabeled video frames.
Our differentiable formalization, bridging the representation gap between the 3D pose and spatial part maps, allows us to operate on videos with diverse camera movements.
arXiv Detail & Related papers (2020-04-09T07:55:01Z) - Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D
Human Pose Estimation [107.07047303858664]
Large-scale human datasets with 3D ground-truth annotations are difficult to obtain in the wild.
We address this problem by augmenting existing 2D datasets with high-quality 3D pose fits.
The resulting annotations are sufficient to train from scratch 3D pose regressor networks that outperform the current state-of-the-art on in-the-wild benchmarks.
arXiv Detail & Related papers (2020-04-07T20:21:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.