Benchmarking Learning Efficiency in Deep Reservoir Computing
- URL: http://arxiv.org/abs/2210.02549v1
- Date: Thu, 29 Sep 2022 08:16:52 GMT
- Title: Benchmarking Learning Efficiency in Deep Reservoir Computing
- Authors: Hugo Cisneros, Josef Sivic, Tomas Mikolov
- Abstract summary: We introduce a benchmark of increasingly difficult tasks together with a data efficiency metric to measure how quickly machine learning models learn from training data.
We compare the learning speed of some established sequential supervised models, such as RNNs, LSTMs, or Transformers, with relatively less known alternative models based on reservoir computing.
- Score: 23.753943709362794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is common to evaluate the performance of a machine learning model by
measuring its predictive power on a test dataset. This approach favors
complicated models that can smoothly fit complex functions and generalize well
from training data points. Although essential components of intelligence, speed
and data efficiency of this learning process are rarely reported or compared
between different candidate models. In this paper, we introduce a benchmark of
increasingly difficult tasks together with a data efficiency metric to measure
how quickly machine learning models learn from training data. We compare the
learning speed of some established sequential supervised models, such as RNNs,
LSTMs, or Transformers, with relatively less known alternative models based on
reservoir computing. The proposed tasks require a wide range of computational
primitives, such as memory or the ability to compute Boolean functions, to be
effectively solved. Surprisingly, we observe that reservoir computing systems
that rely on dynamically evolving feature maps learn faster than fully
supervised methods trained with stochastic gradient optimization while
achieving comparable accuracy scores. The code, benchmark, trained models, and
results to reproduce our experiments are available at
https://github.com/hugcis/benchmark_learning_efficiency/ .
Related papers
- Data Augmentation for Sparse Multidimensional Learning Performance Data Using Generative AI [17.242331892899543]
Learning performance data describe correct and incorrect answers or problem-solving attempts in adaptive learning.
Learning performance data tend to be highly sparse (80%(sim)90% missing observations) in most real-world applications due to adaptive item selection.
This article proposes a systematic framework for augmenting learner data to address data sparsity in learning performance data.
arXiv Detail & Related papers (2024-09-24T00:25:07Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Performance and Energy Consumption of Parallel Machine Learning
Algorithms [0.0]
Machine learning models have achieved remarkable success in various real-world applications.
Model training in machine learning requires large-scale data sets and multiple iterations before it can work properly.
Parallelization of training algorithms is a common strategy to speed up the process of training.
arXiv Detail & Related papers (2023-05-01T13:04:39Z) - An Entropy-Based Model for Hierarchical Learning [3.1473798197405944]
A common feature among real-world datasets is that data domains are multiscale.
We propose a learning model that exploits this multiscale data structure.
The hierarchical learning model is inspired by the logical and progressive easy-to-hard learning mechanism of human beings.
arXiv Detail & Related papers (2022-12-30T13:14:46Z) - Towards Robust Dataset Learning [90.2590325441068]
We propose a principled, tri-level optimization to formulate the robust dataset learning problem.
Under an abstraction model that characterizes robust vs. non-robust features, the proposed method provably learns a robust dataset.
arXiv Detail & Related papers (2022-11-19T17:06:10Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
This paper compares four state-of-the-art algorithms in two real applications: gesture recognition based on accelerometer data and image classification.
Our results confirm these systems' reliability and the feasibility of deploying them in tiny-memory MCUs.
arXiv Detail & Related papers (2022-09-01T17:05:20Z) - ALBench: A Framework for Evaluating Active Learning in Object Detection [102.81795062493536]
This paper contributes an active learning benchmark framework named as ALBench for evaluating active learning in object detection.
Developed on an automatic deep model training system, this ALBench framework is easy-to-use, compatible with different active learning algorithms, and ensures the same training and testing protocols.
arXiv Detail & Related papers (2022-07-27T07:46:23Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Training Efficiency and Robustness in Deep Learning [2.6451769337566406]
We study approaches to improve the training efficiency and robustness of deep learning models.
We find that prioritizing learning on more informative training data increases convergence speed and improves generalization performance on test data.
We show that a redundancy-aware modification to the sampling of training data improves the training speed and develops an efficient method for detecting the diversity of training signal.
arXiv Detail & Related papers (2021-12-02T17:11:33Z) - Learnability of Learning Performance and Its Application to Data
Valuation [11.78594243870616]
In most machine learning (ML) tasks, evaluating learning performance on a given dataset requires intensive computation.
The ability to efficiently estimate learning performance may benefit a wide spectrum of applications, such as active learning, data quality management, and data valuation.
Recent empirical studies show that for many common ML models, one can accurately learn a parametric model that predicts learning performance for any given input datasets using a small amount of samples.
arXiv Detail & Related papers (2021-07-13T18:56:04Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.