CAP-UDF: Learning Unsigned Distance Functions Progressively from Raw Point Clouds with Consistency-Aware Field Optimization
- URL: http://arxiv.org/abs/2210.02757v3
- Date: Fri, 24 May 2024 09:19:39 GMT
- Title: CAP-UDF: Learning Unsigned Distance Functions Progressively from Raw Point Clouds with Consistency-Aware Field Optimization
- Authors: Junsheng Zhou, Baorui Ma, Shujuan Li, Yu-Shen Liu, Yi Fang, Zhizhong Han,
- Abstract summary: CAP-UDF is a novel method to learn consistency-aware UDF from raw point clouds.
We train a neural network to gradually infer the relationship between queries and the approximated surface.
We also introduce a polygonization algorithm to extract surfaces using the gradients of the learned UDF.
- Score: 54.69408516025872
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surface reconstruction for point clouds is an important task in 3D computer vision. Most of the latest methods resolve this problem by learning signed distance functions from point clouds, which are limited to reconstructing closed surfaces. Some other methods tried to represent open surfaces using unsigned distance functions (UDF) which are learned from ground truth distances. However, the learned UDF is hard to provide smooth distance fields due to the discontinuous character of point clouds. In this paper, we propose CAP-UDF, a novel method to learn consistency-aware UDF from raw point clouds. We achieve this by learning to move queries onto the surface with a field consistency constraint, where we also enable to progressively estimate a more accurate surface. Specifically, we train a neural network to gradually infer the relationship between queries and the approximated surface by searching for the moving target of queries in a dynamic way. Meanwhile, we introduce a polygonization algorithm to extract surfaces using the gradients of the learned UDF. We conduct comprehensive experiments in surface reconstruction for point clouds, real scans or depth maps, and further explore our performance in unsupervised point normal estimation, which demonstrate non-trivial improvements of CAP-UDF over the state-of-the-art methods.
Related papers
- Unsupervised Occupancy Learning from Sparse Point Cloud [8.732260277121547]
Implicit Neural Representations have gained prominence as a powerful framework for capturing complex data modalities.
In this paper, we propose a method to infer occupancy fields instead of Neural Signed Distance Functions.
We highlight its capacity to improve implicit shape inference with respect to baselines and the state-of-the-art using synthetic and real data.
arXiv Detail & Related papers (2024-04-03T14:05:39Z) - GridPull: Towards Scalability in Learning Implicit Representations from
3D Point Clouds [60.27217859189727]
We propose GridPull to improve the efficiency of learning implicit representations from large scale point clouds.
Our novelty lies in the fast inference of a discrete distance field defined on grids without using any neural components.
We use uniform grids for a fast grid search to localize sampled queries, and organize surface points in a tree structure to speed up the calculation of distances to the surface.
arXiv Detail & Related papers (2023-08-25T04:52:52Z) - Unsupervised Inference of Signed Distance Functions from Single Sparse
Point Clouds without Learning Priors [54.966603013209685]
It is vital to infer signed distance functions (SDFs) from 3D point clouds.
We present a neural network to directly infer SDFs from single sparse point clouds.
arXiv Detail & Related papers (2023-03-25T15:56:50Z) - GeoUDF: Surface Reconstruction from 3D Point Clouds via Geometry-guided
Distance Representation [73.77505964222632]
We present a learning-based method, namely GeoUDF, to tackle the problem of reconstructing a discrete surface from a sparse point cloud.
To be specific, we propose a geometry-guided learning method for UDF and its gradient estimation.
To extract triangle meshes from the predicted UDF, we propose a customized edge-based marching cube module.
arXiv Detail & Related papers (2022-11-30T06:02:01Z) - Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors [52.25114448281418]
Current methods are able to reconstruct surfaces by learning Signed Distance Functions (SDFs) from single point clouds without ground truth signed distances or point normals.
We propose to reconstruct highly accurate surfaces from sparse point clouds with an on-surface prior.
Our method can learn SDFs from a single sparse point cloud without ground truth signed distances or point normals.
arXiv Detail & Related papers (2022-04-22T09:45:20Z) - Neural-Pull: Learning Signed Distance Functions from Point Clouds by
Learning to Pull Space onto Surfaces [68.12457459590921]
Reconstructing continuous surfaces from 3D point clouds is a fundamental operation in 3D geometry processing.
We introduce textitNeural-Pull, a new approach that is simple and leads to high quality SDFs.
arXiv Detail & Related papers (2020-11-26T23:18:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.