CIR-Net: Cross-modality Interaction and Refinement for RGB-D Salient
Object Detection
- URL: http://arxiv.org/abs/2210.02843v1
- Date: Thu, 6 Oct 2022 11:59:19 GMT
- Title: CIR-Net: Cross-modality Interaction and Refinement for RGB-D Salient
Object Detection
- Authors: Runmin Cong, Qinwei Lin, Chen Zhang, Chongyi Li, Xiaochun Cao,
Qingming Huang, and Yao Zhao
- Abstract summary: We present a convolutional neural network (CNN) model, named CIR-Net, based on the novel cross-modality interaction and refinement.
Our network outperforms the state-of-the-art saliency detectors both qualitatively and quantitatively.
- Score: 144.66411561224507
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Focusing on the issue of how to effectively capture and utilize
cross-modality information in RGB-D salient object detection (SOD) task, we
present a convolutional neural network (CNN) model, named CIR-Net, based on the
novel cross-modality interaction and refinement. For the cross-modality
interaction, 1) a progressive attention guided integration unit is proposed to
sufficiently integrate RGB-D feature representations in the encoder stage, and
2) a convergence aggregation structure is proposed, which flows the RGB and
depth decoding features into the corresponding RGB-D decoding streams via an
importance gated fusion unit in the decoder stage. For the cross-modality
refinement, we insert a refinement middleware structure between the encoder and
the decoder, in which the RGB, depth, and RGB-D encoder features are further
refined by successively using a self-modality attention refinement unit and a
cross-modality weighting refinement unit. At last, with the gradually refined
features, we predict the saliency map in the decoder stage. Extensive
experiments on six popular RGB-D SOD benchmarks demonstrate that our network
outperforms the state-of-the-art saliency detectors both qualitatively and
quantitatively.
Related papers
- Point-aware Interaction and CNN-induced Refinement Network for RGB-D
Salient Object Detection [95.84616822805664]
We introduce CNNs-assisted Transformer architecture and propose a novel RGB-D SOD network with Point-aware Interaction and CNN-induced Refinement.
In order to alleviate the block effect and detail destruction problems brought by the Transformer naturally, we design a CNN-induced refinement (CNNR) unit for content refinement and supplementation.
arXiv Detail & Related papers (2023-08-17T11:57:49Z) - Dual Swin-Transformer based Mutual Interactive Network for RGB-D Salient
Object Detection [67.33924278729903]
In this work, we propose Dual Swin-Transformer based Mutual Interactive Network.
We adopt Swin-Transformer as the feature extractor for both RGB and depth modality to model the long-range dependencies in visual inputs.
Comprehensive experiments on five standard RGB-D SOD benchmark datasets demonstrate the superiority of the proposed DTMINet method.
arXiv Detail & Related papers (2022-06-07T08:35:41Z) - Cross-modality Discrepant Interaction Network for RGB-D Salient Object
Detection [78.47767202232298]
We propose a novel Cross-modality Discrepant Interaction Network (CDINet) for RGB-D SOD.
Two components are designed to implement the effective cross-modality interaction.
Our network outperforms $15$ state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-08-04T11:24:42Z) - RGB-D Salient Object Detection via 3D Convolutional Neural Networks [19.20231385522917]
We make the first attempt in addressing RGB-D SOD through 3D convolutional neural networks.
The proposed model, named RD3D, aims at pre-fusion in the encoder stage and in-depth fusion in the decoder stage.
We show that RD3D performs favorably against 14 state-of-the-art RGB-D SOD approaches in terms of four key evaluation metrics.
arXiv Detail & Related papers (2021-01-25T17:03:02Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
Depth information has proven to be a useful cue in the semantic segmentation of RGBD images for providing a geometric counterpart to the RGB representation.
Most existing works simply assume that depth measurements are accurate and well-aligned with the RGB pixels and models the problem as a cross-modal feature fusion.
In this paper, we propose a unified and efficient Crossmodality Guided to not only effectively recalibrate RGB feature responses, but also to distill accurate depth information via multiple stages and aggregate the two recalibrated representations alternatively.
arXiv Detail & Related papers (2020-07-17T18:35:24Z) - Cross-Modal Weighting Network for RGB-D Salient Object Detection [76.0965123893641]
We propose a novel Cross-Modal Weighting (CMW) strategy to encourage comprehensive interactions between RGB and depth channels for RGB-D SOD.
Specifically, three RGB-depth interaction modules, named CMW-L, CMW-M and CMW-H, are developed to deal with respectively low-, middle- and high-level cross-modal information fusion.
CMWNet consistently outperforms 15 state-of-the-art RGB-D SOD methods on seven popular benchmarks.
arXiv Detail & Related papers (2020-07-09T16:01:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.