CoGrasp: 6-DoF Grasp Generation for Human-Robot Collaboration
- URL: http://arxiv.org/abs/2210.03173v1
- Date: Thu, 6 Oct 2022 19:23:25 GMT
- Title: CoGrasp: 6-DoF Grasp Generation for Human-Robot Collaboration
- Authors: Abhinav K. Keshari, Hanwen Ren, Ahmed H. Qureshi
- Abstract summary: We propose a novel, deep neural network-based method called CoGrasp that generates human-aware robot grasps.
In real robot experiments, our method achieves about 88% success rate in producing stable grasps.
Our approach enables a safe, natural, and socially-aware human-robot objects' co-grasping experience.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robot grasping is an actively studied area in robotics, mainly focusing on
the quality of generated grasps for object manipulation. However, despite
advancements, these methods do not consider the human-robot collaboration
settings where robots and humans will have to grasp the same objects
concurrently. Therefore, generating robot grasps compatible with human
preferences of simultaneously holding an object becomes necessary to ensure a
safe and natural collaboration experience. In this paper, we propose a novel,
deep neural network-based method called CoGrasp that generates human-aware
robot grasps by contextualizing human preference models of object grasping into
the robot grasp selection process. We validate our approach against existing
state-of-the-art robot grasping methods through simulated and real-robot
experiments and user studies. In real robot experiments, our method achieves
about 88\% success rate in producing stable grasps that also allow humans to
interact and grasp objects simultaneously in a socially compliant manner.
Furthermore, our user study with 10 independent participants indicated our
approach enables a safe, natural, and socially-aware human-robot objects'
co-grasping experience compared to a standard robot grasping technique.
Related papers
- HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - InteRACT: Transformer Models for Human Intent Prediction Conditioned on Robot Actions [7.574421886354134]
InteRACT architecture pre-trains a conditional intent prediction model on large human-human datasets and fine-tunes on a small human-robot dataset.
We evaluate on a set of real-world collaborative human-robot manipulation tasks and show that our conditional model improves over various marginal baselines.
arXiv Detail & Related papers (2023-11-21T19:15:17Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0 is a simulation platform for studying collaborative human-robot tasks in home environments.
It addresses challenges in modeling complex deformable bodies and diversity in appearance and motion.
Human-in-the-loop infrastructure enables real human interaction with simulated robots via mouse/keyboard or a VR interface.
arXiv Detail & Related papers (2023-10-19T17:29:17Z) - ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
This paper introduces a novel deep-learning approach for human-to-robot motion.
Our method does not require paired human-to-robot data, which facilitates its translation to new robots.
Our model outperforms existing works regarding human-to-robot similarity in terms of efficiency and precision.
arXiv Detail & Related papers (2023-09-11T08:55:04Z) - Improving safety in physical human-robot collaboration via deep metric
learning [36.28667896565093]
Direct physical interaction with robots is becoming increasingly important in flexible production scenarios.
In order to keep the risk potential low, relatively simple measures are prescribed for operation, such as stopping the robot if there is physical contact or if a safety distance is violated.
This work uses the Deep Metric Learning (DML) approach to distinguish between non-contact robot movement, intentional contact aimed at physical human-robot interaction, and collision situations.
arXiv Detail & Related papers (2023-02-23T11:26:51Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - Generalizable Human-Robot Collaborative Assembly Using Imitation
Learning and Force Control [17.270360447188196]
We present a system for human-robot collaborative assembly using learning from demonstration and pose estimation.
The proposed system is demonstrated using a physical 6 DoF manipulator in a collaborative human-robot assembly scenario.
arXiv Detail & Related papers (2022-12-02T20:35:55Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
We show that a short calibration using REMP can effectively bridge the gap between what a non-expert user thinks a robot can reach and the ground-truth.
We show that this calibration procedure not only results in better user perception, but also promotes more efficient human-robot collaborations.
arXiv Detail & Related papers (2021-03-06T09:14:30Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
We propose a novel explainable AI (XAI) framework for achieving human-like communication in human-robot collaborations.
The robot builds a hierarchical mind model of the human user and generates explanations of its own mind as a form of communications.
Results show that the generated explanations of our approach significantly improves the collaboration performance and user perception of the robot.
arXiv Detail & Related papers (2020-07-24T23:35:03Z) - Human Grasp Classification for Reactive Human-to-Robot Handovers [50.91803283297065]
We propose an approach for human-to-robot handovers in which the robot meets the human halfway.
We collect a human grasp dataset which covers typical ways of holding objects with various hand shapes and poses.
We present a planning and execution approach that takes the object from the human hand according to the detected grasp and hand position.
arXiv Detail & Related papers (2020-03-12T19:58:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.