Interpreting County Level COVID-19 Infection and Feature Sensitivity
using Deep Learning Time Series Models
- URL: http://arxiv.org/abs/2210.03258v1
- Date: Thu, 6 Oct 2022 23:45:37 GMT
- Title: Interpreting County Level COVID-19 Infection and Feature Sensitivity
using Deep Learning Time Series Models
- Authors: Md Khairul Islam, Di Zhu, Yingzheng Liu, Andrej Erkelens, Nick
Daniello, Judy Fox
- Abstract summary: We propose a novel framework that uses deep learning to study feature sensitivity for model predictions.
We forecast county-level COVID-19 infection using the Temporal Fusion Transformer.
We then use sensitivity analysis extending Morris Method to see how sensitive the outputs are with respect to our static and dynamic input features.
- Score: 1.101002667958165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretable machine learning plays a key role in healthcare because it is
challenging in understanding feature importance in deep learning model
predictions. We propose a novel framework that uses deep learning to study
feature sensitivity for model predictions. This work combines sensitivity
analysis with heterogeneous time-series deep learning model prediction, which
corresponds to the interpretations of spatio-temporal features. We forecast
county-level COVID-19 infection using the Temporal Fusion Transformer. We then
use the sensitivity analysis extending Morris Method to see how sensitive the
outputs are with respect to perturbation to our static and dynamic input
features. The significance of the work is grounded in a real-world COVID-19
infection prediction with highly non-stationary, finely granular, and
heterogeneous data. 1) Our model can capture the detailed daily changes of
temporal and spatial model behaviors and achieves high prediction performance
compared to a PyTorch baseline. 2) By analyzing the Morris sensitivity indices
and attention patterns, we decipher the meaning of feature importance with
observational population and dynamic model changes. 3) We have collected 2.5
years of socioeconomic and health features over 3142 US counties, such as
observed cases and deaths, and a number of static (age distribution, health
disparity, and industry) and dynamic features (vaccination, disease spread,
transmissible cases, and social distancing). Using the proposed framework, we
conduct extensive experiments and show our model can learn complex interactions
and perform predictions for daily infection at the county level. Being able to
model the disease infection with a hybrid prediction and description accuracy
measurement with Morris index at the county level is a central idea that sheds
light on individual feature interpretation via sensitivity analysis.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - QXAI: Explainable AI Framework for Quantitative Analysis in Patient
Monitoring Systems [9.29069202652354]
An Explainable AI for Quantitative analysis (QXAI) framework is proposed with post-hoc model explainability and intrinsic explainability for regression and classification tasks.
We adopted the artificial neural networks (ANN) and attention-based Bidirectional LSTM (BiLSTM) models for the prediction of heart rate and classification of physical activities based on sensor data.
arXiv Detail & Related papers (2023-09-19T03:50:30Z) - Forecasting Patient Flows with Pandemic Induced Concept Drift using
Explainable Machine Learning [0.0]
This study investigates how a suite of novel quasi-real-time variables can improve the forecasting models of patient flows.
The prevailing COVID-19 Alert Level feature together with Google search terms and pedestrian traffic were effective at producing generalisable forecasts.
arXiv Detail & Related papers (2022-11-01T20:42:26Z) - Assessing the Performance of Automated Prediction and Ranking of Patient
Age from Chest X-rays Against Clinicians [4.795478287106675]
Deep learning has been demonstrated to allow the accurate estimation of patient age from chest X-rays.
We present a novel comparative study of the performance of radiologists versus state-of-the-art deep learning models.
We train our models with a heterogeneous database of 1.8M chest X-rays with ground truth patient ages and investigate the limitations on model accuracy.
arXiv Detail & Related papers (2022-07-04T10:09:48Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - Patient-independent Epileptic Seizure Prediction using Deep Learning
Models [39.19336481493405]
The purpose of a seizure prediction system is to successfully identify the pre-ictal brain stage, which occurs before a seizure event.
Patient-independent seizure prediction models are designed to offer accurate performance across multiple subjects within a dataset.
We propose two patient-independent deep learning architectures with different learning strategies that can learn a global function utilizing data from multiple subjects.
arXiv Detail & Related papers (2020-11-18T23:13:48Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - DeepCOVIDNet: An Interpretable Deep Learning Model for Predictive
Surveillance of COVID-19 Using Heterogeneous Features and their Interactions [2.30238915794052]
We propose a deep learning model to forecast the range of increase in COVID-19 infected cases in future days.
Using data collected from various sources, we estimate the range of increase in infected cases seven days into the future for all U.S. counties.
arXiv Detail & Related papers (2020-07-31T23:37:38Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.