GOLLIC: Learning Global Context beyond Patches for Lossless
High-Resolution Image Compression
- URL: http://arxiv.org/abs/2210.03301v1
- Date: Fri, 7 Oct 2022 03:15:02 GMT
- Title: GOLLIC: Learning Global Context beyond Patches for Lossless
High-Resolution Image Compression
- Authors: Yuan Lan, Liang Qin, Zhaoyi Sun, Yang Xiang, Jie Sun
- Abstract summary: We propose a hierarchical latent variable model with a global context to capture the long-term dependencies of high-resolution images.
We show that our global context model improves compression ratio compared to the engineered codecs and deep learning models.
- Score: 10.065286986365697
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural-network-based approaches recently emerged in the field of data
compression and have already led to significant progress in image compression,
especially in achieving a higher compression ratio. In the lossless image
compression scenario, however, existing methods often struggle to learn a
probability model of full-size high-resolution images due to the limitation of
the computation source. The current strategy is to crop high-resolution images
into multiple non-overlapping patches and process them independently. This
strategy ignores long-term dependencies beyond patches, thus limiting modeling
performance. To address this problem, we propose a hierarchical latent variable
model with a global context to capture the long-term dependencies of
high-resolution images. Besides the latent variable unique to each patch, we
introduce shared latent variables between patches to construct the global
context. The shared latent variables are extracted by a self-supervised
clustering module inside the model's encoder. This clustering module assigns
each patch the confidence that it belongs to any cluster. Later, shared latent
variables are learned according to latent variables of patches and their
confidence, which reflects the similarity of patches in the same cluster and
benefits the global context modeling. Experimental results show that our global
context model improves compression ratio compared to the engineered codecs and
deep learning models on three benchmark high-resolution image datasets, DIV2K,
CLIC.pro, and CLIC.mobile.
Related papers
- MLIC++: Linear Complexity Multi-Reference Entropy Modeling for Learned
Image Compression [30.71965784982577]
We introduce MEM++, which captures diverse range of correlations inherent in the latent representation.
MEM++ achieves state-of-the-art performance, reducing BD-rate by 13.39% on the Kodak dataset compared to VTM-17.0 in PSNR.
MLIC++ exhibits linear GPU memory consumption with resolution, making it highly suitable for high-resolution image coding.
arXiv Detail & Related papers (2023-07-28T09:11:37Z) - Multiscale Augmented Normalizing Flows for Image Compression [17.441496966834933]
We present a novel concept, which adapts the hierarchical latent space for augmented normalizing flows, an invertible latent variable model.
Our best performing model achieved average rate savings of more than 7% over comparable single-scale models.
arXiv Detail & Related papers (2023-05-09T13:42:43Z) - Any-resolution Training for High-resolution Image Synthesis [55.19874755679901]
Generative models operate at fixed resolution, even though natural images come in a variety of sizes.
We argue that every pixel matters and create datasets with variable-size images, collected at their native resolutions.
We introduce continuous-scale training, a process that samples patches at random scales to train a new generator with variable output resolutions.
arXiv Detail & Related papers (2022-04-14T17:59:31Z) - Joint Global and Local Hierarchical Priors for Learned Image Compression [30.44884350320053]
Recently, learned image compression methods have shown superior performance compared to the traditional hand-crafted image codecs.
We propose a novel entropy model called Information Transformer (Informer) that exploits both local and global information in a content-dependent manner.
Our experiments demonstrate that Informer improves rate-distortion performance over the state-of-the-art methods on the Kodak and Tecnick datasets.
arXiv Detail & Related papers (2021-12-08T06:17:37Z) - Variable-Rate Deep Image Compression through Spatially-Adaptive Feature
Transform [58.60004238261117]
We propose a versatile deep image compression network based on Spatial Feature Transform (SFT arXiv:1804.02815)
Our model covers a wide range of compression rates using a single model, which is controlled by arbitrary pixel-wise quality maps.
The proposed framework allows us to perform task-aware image compressions for various tasks.
arXiv Detail & Related papers (2021-08-21T17:30:06Z) - Lossless Compression with Latent Variable Models [4.289574109162585]
We use latent variable models, which we call 'bits back with asymmetric numeral systems' (BB-ANS)
The method involves interleaving encode and decode steps, and achieves an optimal rate when compressing batches of data.
We describe 'Craystack', a modular software framework which we have developed for rapid prototyping of compression using deep generative models.
arXiv Detail & Related papers (2021-04-21T14:03:05Z) - InfinityGAN: Towards Infinite-Resolution Image Synthesis [92.40782797030977]
We present InfinityGAN, a method to generate arbitrary-resolution images.
We show how it trains and infers patch-by-patch seamlessly with low computational resources.
arXiv Detail & Related papers (2021-04-08T17:59:30Z) - Causal Contextual Prediction for Learned Image Compression [36.08393281509613]
We propose the concept of separate entropy coding to leverage a serial decoding process for causal contextual entropy prediction in the latent space.
A causal context model is proposed that separates the latents across channels and makes use of cross-channel relationships to generate highly informative contexts.
We also propose a causal global prediction model, which is able to find global reference points for accurate predictions of unknown points.
arXiv Detail & Related papers (2020-11-19T08:15:10Z) - Learning Context-Based Non-local Entropy Modeling for Image Compression [140.64888994506313]
In this paper, we propose a non-local operation for context modeling by employing the global similarity within the context.
The entropy model is further adopted as the rate loss in a joint rate-distortion optimization.
Considering that the width of the transforms is essential in training low distortion models, we finally produce a U-Net block in the transforms to increase the width with manageable memory consumption and time complexity.
arXiv Detail & Related papers (2020-05-10T13:28:18Z) - Learning End-to-End Lossy Image Compression: A Benchmark [90.35363142246806]
We first conduct a comprehensive literature survey of learned image compression methods.
We describe milestones in cutting-edge learned image-compression methods, review a broad range of existing works, and provide insights into their historical development routes.
By introducing a coarse-to-fine hyperprior model for entropy estimation and signal reconstruction, we achieve improved rate-distortion performance.
arXiv Detail & Related papers (2020-02-10T13:13:43Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.