Learning Social Navigation from Demonstrations with Conditional Neural
Processes
- URL: http://arxiv.org/abs/2210.03582v1
- Date: Fri, 7 Oct 2022 14:37:56 GMT
- Title: Learning Social Navigation from Demonstrations with Conditional Neural
Processes
- Authors: Yigit Yildirim, Emre Ugur
- Abstract summary: This paper presents a data-driven navigation architecture that uses Conditional Neural Processes to learn global and local controllers of the mobile robot from observations.
Our results demonstrate that the proposed framework can successfully carry out navigation tasks regarding social norms in the data.
- Score: 2.627046865670577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sociability is essential for modern robots to increase their acceptability in
human environments. Traditional techniques use manually engineered utility
functions inspired by observing pedestrian behaviors to achieve social
navigation. However, social aspects of navigation are diverse, changing across
different types of environments, societies, and population densities, making it
unrealistic to use hand-crafted techniques in each domain. This paper presents
a data-driven navigation architecture that uses state-of-the-art neural
architectures, namely Conditional Neural Processes, to learn global and local
controllers of the mobile robot from observations. Additionally, we leverage a
state-of-the-art, deep prediction mechanism to detect situations not similar to
the trained ones, where reactive controllers step in to ensure safe navigation.
Our results demonstrate that the proposed framework can successfully carry out
navigation tasks regarding social norms in the data. Further, we showed that
our system produces fewer personal-zone violations, causing less discomfort.
Related papers
- A Study on Learning Social Robot Navigation with Multimodal Perception [6.052803245103173]
We present a study on learning social robot navigation with multimodal perception using a large-scale real-world dataset.
We compare unimodal and multimodal learning approaches against a set of classical navigation approaches in different social scenarios.
The results show that multimodal learning has a clear advantage over unimodal learning in both dataset and human studies.
arXiv Detail & Related papers (2023-09-22T01:47:47Z) - Principles and Guidelines for Evaluating Social Robot Navigation
Algorithms [44.51586279645062]
Social robot navigation is difficult to evaluate because it involves dynamic human agents and their perceptions of the appropriateness of robot behavior.
Our contributions include (a) a definition of a socially navigating robot as one that respects the principles of safety, comfort, legibility, politeness, social competency, agent understanding, proactivity, and responsiveness to context, (b) guidelines for the use of metrics, development of scenarios, benchmarks, datasets, and simulators to evaluate social navigation, and (c) a social navigation metrics framework to make it easier to compare results from different simulators, robots and datasets.
arXiv Detail & Related papers (2023-06-29T07:31:43Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
We develop methods for training policies for socially unobtrusive navigation.
By minimizing this counterfactual perturbation, we can induce robots to behave in ways that do not alter the natural behavior of humans in the shared space.
We collect a large dataset where an indoor mobile robot interacts with human bystanders.
arXiv Detail & Related papers (2023-06-02T19:07:52Z) - Gesture2Path: Imitation Learning for Gesture-aware Navigation [54.570943577423094]
We present Gesture2Path, a novel social navigation approach that combines image-based imitation learning with model-predictive control.
We deploy our method on real robots and showcase the effectiveness of our approach for the four gestures-navigation scenarios.
arXiv Detail & Related papers (2022-09-19T23:05:36Z) - Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of
Demonstrations for Social Navigation [92.66286342108934]
Social navigation is the capability of an autonomous agent, such as a robot, to navigate in a'socially compliant' manner in the presence of other intelligent agents such as humans.
Our dataset contains 8.7 hours, 138 trajectories, 25 miles of socially compliant, human teleoperated driving demonstrations.
arXiv Detail & Related papers (2022-03-28T19:09:11Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z) - APPLD: Adaptive Planner Parameter Learning from Demonstration [48.63930323392909]
We introduce APPLD, Adaptive Planner Learning from Demonstration, that allows existing navigation systems to be successfully applied to new complex environments.
APPLD is verified on two robots running different navigation systems in different environments.
Experimental results show that APPLD can outperform navigation systems with the default and expert-tuned parameters, and even the human demonstrator themselves.
arXiv Detail & Related papers (2020-03-31T21:15:16Z) - Visual Navigation Among Humans with Optimal Control as a Supervisor [72.5188978268463]
We propose an approach that combines learning-based perception with model-based optimal control to navigate among humans.
Our approach is enabled by our novel data-generation tool, HumANav.
We demonstrate that the learned navigation policies can anticipate and react to humans without explicitly predicting future human motion.
arXiv Detail & Related papers (2020-03-20T16:13:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.