Label Propagation with Weak Supervision
- URL: http://arxiv.org/abs/2210.03594v3
- Date: Sun, 9 Apr 2023 20:51:43 GMT
- Title: Label Propagation with Weak Supervision
- Authors: Rattana Pukdee, Dylan Sam, Maria-Florina Balcan, Pradeep Ravikumar
- Abstract summary: We introduce a novel analysis of the classical label propagation algorithm (LPA) (Zhu & Ghahramani, 2002)
We provide an error bound that exploits both the local geometric properties of the underlying graph and the quality of the prior information.
We demonstrate the ability of our approach on multiple benchmark weakly supervised classification tasks, showing improvements upon existing semi-supervised and weakly supervised methods.
- Score: 47.52032178837098
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised learning and weakly supervised learning are important
paradigms that aim to reduce the growing demand for labeled data in current
machine learning applications. In this paper, we introduce a novel analysis of
the classical label propagation algorithm (LPA) (Zhu & Ghahramani, 2002) that
moreover takes advantage of useful prior information, specifically
probabilistic hypothesized labels on the unlabeled data. We provide an error
bound that exploits both the local geometric properties of the underlying graph
and the quality of the prior information. We also propose a framework to
incorporate multiple sources of noisy information. In particular, we consider
the setting of weak supervision, where our sources of information are weak
labelers. We demonstrate the ability of our approach on multiple benchmark
weakly supervised classification tasks, showing improvements upon existing
semi-supervised and weakly supervised methods.
Related papers
- AutoWS: Automated Weak Supervision Framework for Text Classification [1.748907524043535]
We propose a novel framework for increasing the efficiency of weak supervision process while decreasing the dependency on domain experts.
Our method requires a small set of labeled examples per label class and automatically creates a set of labeling functions to assign noisy labels to numerous unlabeled data.
arXiv Detail & Related papers (2023-02-07T07:12:05Z) - Losses over Labels: Weakly Supervised Learning via Direct Loss
Construction [71.11337906077483]
Programmable weak supervision is a growing paradigm within machine learning.
We propose Losses over Labels (LoL) as it creates losses directly from ofs without going through the intermediate step of a label.
We show that LoL improves upon existing weak supervision methods on several benchmark text and image classification tasks.
arXiv Detail & Related papers (2022-12-13T22:29:14Z) - Label Noise-Resistant Mean Teaching for Weakly Supervised Fake News
Detection [93.6222609806278]
We propose a novel label noise-resistant mean teaching approach (LNMT) for weakly supervised fake news detection.
LNMT leverages unlabeled news and feedback comments of users to enlarge the amount of training data.
LNMT establishes a mean teacher framework equipped with label propagation and label reliability estimation.
arXiv Detail & Related papers (2022-06-10T16:01:58Z) - Learning from Label Proportions by Learning with Label Noise [30.7933303912474]
Learning from label proportions (LLP) is a weakly supervised classification problem where data points are grouped into bags.
We provide a theoretically grounded approach to LLP based on a reduction to learning with label noise.
Our approach demonstrates improved empirical performance in deep learning scenarios across multiple datasets and architectures.
arXiv Detail & Related papers (2022-03-04T18:52:21Z) - Data Consistency for Weakly Supervised Learning [15.365232702938677]
Training machine learning models involves using large amounts of human-annotated data.
We propose a novel weak supervision algorithm that processes noisy labels, i.e., weak signals.
We show that it significantly outperforms state-of-the-art weak supervision methods on both text and image classification tasks.
arXiv Detail & Related papers (2022-02-08T16:48:19Z) - Learning to Detect Instance-level Salient Objects Using Complementary
Image Labels [55.049347205603304]
We present the first weakly-supervised approach to the salient instance detection problem.
We propose a novel weakly-supervised network with three branches: a Saliency Detection Branch leveraging class consistency information to locate candidate objects; a Boundary Detection Branch exploiting class discrepancy information to delineate object boundaries; and a Centroid Detection Branch using subitizing information to detect salient instance centroids.
arXiv Detail & Related papers (2021-11-19T10:15:22Z) - Self-Training with Weak Supervision [32.68342091430266]
State-of-the-art deep neural networks require large-scale labeled training data that is often expensive to obtain or not available for many tasks.
weak supervision in the form of domain-specific rules has been shown to be useful in such settings.
We develop a weak supervision framework (ASTRA) that leverages all the available data for a given task.
arXiv Detail & Related papers (2021-04-12T14:45:04Z) - Disambiguation of weak supervision with exponential convergence rates [88.99819200562784]
In supervised learning, data are annotated with incomplete yet discriminative information.
In this paper, we focus on partial labelling, an instance of weak supervision where, from a given input, we are given a set of potential targets.
We propose an empirical disambiguation algorithm to recover full supervision from weak supervision.
arXiv Detail & Related papers (2021-02-04T18:14:32Z) - Weakly-supervised Salient Instance Detection [65.0408760733005]
We present the first weakly-supervised approach to the salient instance detection problem.
We propose a novel weakly-supervised network with three branches: a Saliency Detection Branch leveraging class consistency information to locate candidate objects; a Boundary Detection Branch exploiting class discrepancy information to delineate object boundaries; and a Centroid Detection Branch using subitizing information to detect salient instance centroids.
arXiv Detail & Related papers (2020-09-29T09:47:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.