Pose Guided Human Image Synthesis with Partially Decoupled GAN
- URL: http://arxiv.org/abs/2210.03627v1
- Date: Fri, 7 Oct 2022 15:31:37 GMT
- Title: Pose Guided Human Image Synthesis with Partially Decoupled GAN
- Authors: Jianhan Wu and Jianzong Wang and Shijing Si and Xiaoyang Qu and Jing
Xiao
- Abstract summary: Pose Guided Human Image Synthesis (PGHIS) is a challenging task of transforming a human image from the reference pose to a target pose.
We propose a method by decoupling the human body into several parts to guide the synthesis of a realistic image of the person.
In addition, we design a multi-head attention-based module for PGHIS.
- Score: 25.800174118151638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pose Guided Human Image Synthesis (PGHIS) is a challenging task of
transforming a human image from the reference pose to a target pose while
preserving its style. Most existing methods encode the texture of the whole
reference human image into a latent space, and then utilize a decoder to
synthesize the image texture of the target pose. However, it is difficult to
recover the detailed texture of the whole human image. To alleviate this
problem, we propose a method by decoupling the human body into several parts
(\eg, hair, face, hands, feet, \etc) and then using each of these parts to
guide the synthesis of a realistic image of the person, which preserves the
detailed information of the generated images. In addition, we design a
multi-head attention-based module for PGHIS. Because most convolutional neural
network-based methods have difficulty in modeling long-range dependency due to
the convolutional operation, the long-range modeling capability of attention
mechanism is more suitable than convolutional neural networks for pose transfer
task, especially for sharp pose deformation. Extensive experiments on
Market-1501 and DeepFashion datasets reveal that our method almost outperforms
other existing state-of-the-art methods in terms of both qualitative and
quantitative metrics.
Related papers
- GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
We introduce an effective framework Generalizable Model-based Neural Radiance Fields to synthesize free-viewpoint images.
Specifically, we propose a geometry-guided attention mechanism to register the appearance code from multi-view 2D images to a geometry proxy.
arXiv Detail & Related papers (2023-03-24T03:32:02Z) - DeepPortraitDrawing: Generating Human Body Images from Freehand Sketches [75.4318318890065]
We present DeepDrawing, a framework for converting roughly drawn sketches to realistic human body images.
To encode complicated body shapes under various poses, we take a local-to-global approach.
Our method produces more realistic images than the state-of-the-art sketch-to-image synthesis techniques.
arXiv Detail & Related papers (2022-05-04T14:02:45Z) - Generalizable Neural Performer: Learning Robust Radiance Fields for
Human Novel View Synthesis [52.720314035084215]
This work targets at using a general deep learning framework to synthesize free-viewpoint images of arbitrary human performers.
We present a simple yet powerful framework, named Generalizable Neural Performer (GNR), that learns a generalizable and robust neural body representation.
Experiments on GeneBody-1.0 and ZJU-Mocap show better robustness of our methods than recent state-of-the-art generalizable methods.
arXiv Detail & Related papers (2022-04-25T17:14:22Z) - Neural Actor: Neural Free-view Synthesis of Human Actors with Pose
Control [80.79820002330457]
We propose a new method for high-quality synthesis of humans from arbitrary viewpoints and under arbitrary controllable poses.
Our method achieves better quality than the state-of-the-arts on playback as well as novel pose synthesis, and can even generalize well to new poses that starkly differ from the training poses.
arXiv Detail & Related papers (2021-06-03T17:40:48Z) - Style and Pose Control for Image Synthesis of Humans from a Single
Monocular View [78.6284090004218]
StylePoseGAN is a non-controllable generator to accept conditioning of pose and appearance separately.
Our network can be trained in a fully supervised way with human images to disentangle pose, appearance and body parts.
StylePoseGAN achieves state-of-the-art image generation fidelity on common perceptual metrics.
arXiv Detail & Related papers (2021-02-22T18:50:47Z) - Structure-aware Person Image Generation with Pose Decomposition and
Semantic Correlation [29.727033198797518]
We propose a structure-aware flow based method for high-quality person image generation.
We decompose the human body into different semantic parts and apply different networks to predict the flow fields for these parts separately.
Our method can generate high-quality results under large pose discrepancy and outperforms state-of-the-art methods in both qualitative and quantitative comparisons.
arXiv Detail & Related papers (2021-02-05T03:07:57Z) - Liquid Warping GAN with Attention: A Unified Framework for Human Image
Synthesis [58.05389586712485]
We tackle human image synthesis, including human motion imitation, appearance transfer, and novel view synthesis.
In this paper, we propose a 3D body mesh recovery module to disentangle the pose and shape.
We also build a new dataset, namely iPER dataset, for the evaluation of human motion imitation, appearance transfer, and novel view synthesis.
arXiv Detail & Related papers (2020-11-18T02:57:47Z) - A Robust Pose Transformational GAN for Pose Guided Person Image
Synthesis [9.570395744724461]
We propose a simple yet effective pose transformation GAN by utilizing the Residual Learning method without any additional feature learning to generate a given human image in any arbitrary pose.
Using effective data augmentation techniques and cleverly tuning the model, we achieve robustness in terms of illumination, occlusion, distortion and scale.
We present a detailed study, both qualitative and quantitative, to demonstrate the superiority of our model over the existing methods on two large datasets.
arXiv Detail & Related papers (2020-01-05T15:32:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.