DPAR: Decoupled Graph Neural Networks with Node-Level Differential Privacy
- URL: http://arxiv.org/abs/2210.04442v3
- Date: Fri, 15 Mar 2024 03:20:47 GMT
- Title: DPAR: Decoupled Graph Neural Networks with Node-Level Differential Privacy
- Authors: Qiuchen Zhang, Hong kyu Lee, Jing Ma, Jian Lou, Carl Yang, Li Xiong,
- Abstract summary: We aim to achieve node-level differential privacy (DP) for training GNNs so that a node and its edges are protected.
We propose a Decoupled GNN with Differentially Private Approximate Personalized PageRank (DPAR) for training GNNs with an enhanced privacy-utility tradeoff.
- Score: 30.15971370844865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have achieved great success in learning with graph-structured data. Privacy concerns have also been raised for the trained models which could expose the sensitive information of graphs including both node features and the structure information. In this paper, we aim to achieve node-level differential privacy (DP) for training GNNs so that a node and its edges are protected. Node DP is inherently difficult for GNNs because all direct and multi-hop neighbors participate in the calculation of gradients for each node via layer-wise message passing and there is no bound on how many direct and multi-hop neighbors a node can have, so existing DP methods will result in high privacy cost or poor utility due to high node sensitivity. We propose a Decoupled GNN with Differentially Private Approximate Personalized PageRank (DPAR) for training GNNs with an enhanced privacy-utility tradeoff. The key idea is to decouple the feature projection and message passing via a DP PageRank algorithm which learns the structure information and uses the top-$K$ neighbors determined by the PageRank for feature aggregation. By capturing the most important neighbors for each node and avoiding the layer-wise message passing, it bounds the node sensitivity and achieves improved privacy-utility tradeoff compared to layer-wise perturbation based methods. We theoretically analyze the node DP guarantee for the two processes combined together and empirically demonstrate better utilities of DPAR with the same level of node DP compared with state-of-the-art methods.
Related papers
- Differentially Private Graph Neural Network with Importance-Grained
Noise Adaption [6.319864669924721]
Graph Neural Networks (GNNs) with differential privacy have been proposed to preserve graph privacy when nodes represent personal and sensitive information.
We study the problem of importance-grained privacy, where nodes contain personal data that need to be kept private but are critical for training a GNN.
We propose NAP-GNN, a node-grained privacy-preserving GNN algorithm with privacy guarantees based on adaptive differential privacy to safeguard node information.
arXiv Detail & Related papers (2023-08-09T13:18:41Z) - SplitGNN: Splitting GNN for Node Classification with Heterogeneous
Attention [29.307331758493323]
We propose a split learning-based graph neural network (SplitGNN) for graph computation.
Our SplitGNN allows the isolated heterogeneous neighborhood to be collaboratively utilized.
We demonstrate the effectiveness of our SplitGNN on node classification tasks for two standard public datasets and the real-world dataset.
arXiv Detail & Related papers (2023-01-27T12:08:44Z) - GAP: Differentially Private Graph Neural Networks with Aggregation
Perturbation [19.247325210343035]
Graph Neural Networks (GNNs) are powerful models designed for graph data that learn node representation.
Recent studies have shown that GNNs can raise significant privacy concerns when graph data contain sensitive information.
We propose GAP, a novel differentially private GNN that safeguards privacy of nodes and edges.
arXiv Detail & Related papers (2022-03-02T08:58:07Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
This paper introduces a graph generative process to model how the observed edges are generated by aggregating the node interactions over a set of overlapping node communities.
We partition each edge into the summation of multiple community-specific weighted edges and use them to define community-specific GNNs.
A variational inference framework is proposed to jointly learn a GNN based inference network that partitions the edges into different communities, these community-specific GNNs, and a GNN based predictor that combines community-specific GNNs for the end classification task.
arXiv Detail & Related papers (2022-02-07T14:37:50Z) - Node-Level Differentially Private Graph Neural Networks [14.917945355629563]
Graph Neural Networks (GNNs) are a popular technique for modelling graph-structured data.
This work formally defines the problem of learning 1-layer GNNs with node-level privacy.
We provide an algorithmic solution with a strong differential privacy guarantee.
arXiv Detail & Related papers (2021-11-23T16:18:53Z) - Noise-robust Graph Learning by Estimating and Leveraging Pairwise
Interactions [123.07967420310796]
This paper bridges the gap by proposing a pairwise framework for noisy node classification on graphs.
PI-GNN relies on the PI as a primary learning proxy in addition to the pointwise learning from the noisy node class labels.
Our proposed framework PI-GNN contributes two novel components: (1) a confidence-aware PI estimation model that adaptively estimates the PI labels, and (2) a decoupled training approach that leverages the estimated PI labels.
arXiv Detail & Related papers (2021-06-14T14:23:08Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
We propose a graph network layer, known as Node2Seq, to learn node embeddings with explicitly trainable weights for different neighboring nodes.
For a target node, our method sorts its neighboring nodes via attention mechanism and then employs 1D convolutional neural networks (CNNs) to enable explicit weights for information aggregation.
In addition, we propose to incorporate non-local information for feature learning in an adaptive manner based on the attention scores.
arXiv Detail & Related papers (2021-01-06T03:05:37Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z) - Towards Deeper Graph Neural Networks with Differentiable Group
Normalization [61.20639338417576]
Graph neural networks (GNNs) learn the representation of a node by aggregating its neighbors.
Over-smoothing is one of the key issues which limit the performance of GNNs as the number of layers increases.
We introduce two over-smoothing metrics and a novel technique, i.e., differentiable group normalization (DGN)
arXiv Detail & Related papers (2020-06-12T07:18:02Z) - Locally Private Graph Neural Networks [12.473486843211573]
We study the problem of node data privacy, where graph nodes have potentially sensitive data that is kept private.
We develop a privacy-preserving, architecture-agnostic GNN learning algorithm with formal privacy guarantees.
Experiments conducted over real-world datasets demonstrate that our method can maintain a satisfying level of accuracy with low privacy loss.
arXiv Detail & Related papers (2020-06-09T22:36:06Z) - EdgeNets:Edge Varying Graph Neural Networks [179.99395949679547]
This paper puts forth a general framework that unifies state-of-the-art graph neural networks (GNNs) through the concept of EdgeNet.
An EdgeNet is a GNN architecture that allows different nodes to use different parameters to weigh the information of different neighbors.
This is a general linear and local operation that a node can perform and encompasses under one formulation all existing graph convolutional neural networks (GCNNs) as well as graph attention networks (GATs)
arXiv Detail & Related papers (2020-01-21T15:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.