Uncertainty-aware LiDAR Panoptic Segmentation
- URL: http://arxiv.org/abs/2210.04472v1
- Date: Mon, 10 Oct 2022 07:54:57 GMT
- Title: Uncertainty-aware LiDAR Panoptic Segmentation
- Authors: Kshitij Sirohi, Sajad Marvi, Daniel B\"uscher and Wolfram Burgard
- Abstract summary: We introduce a novel approach for solving the task of uncertainty-aware panoptic segmentation using LiDAR point clouds.
Our proposed EvLPSNet network is the first to solve this task efficiently in a sampling-free manner.
We provide several strong baselines combining state-of-the-art panoptic segmentation networks with sampling-free uncertainty estimation techniques.
- Score: 21.89063036529791
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern autonomous systems often rely on LiDAR scanners, in particular for
autonomous driving scenarios. In this context, reliable scene understanding is
indispensable. Current learning-based methods typically try to achieve maximum
performance for this task, while neglecting a proper estimation of the
associated uncertainties. In this work, we introduce a novel approach for
solving the task of uncertainty-aware panoptic segmentation using LiDAR point
clouds. Our proposed EvLPSNet network is the first to solve this task
efficiently in a sampling-free manner. It aims to predict per-point semantic
and instance segmentations, together with per-point uncertainty estimates.
Moreover, it incorporates methods for improving the performance by employing
the predicted uncertainties. We provide several strong baselines combining
state-of-the-art panoptic segmentation networks with sampling-free uncertainty
estimation techniques. Extensive evaluations show that we achieve the best
performance on uncertainty-aware panoptic segmentation quality and calibration
compared to these baselines. We make our code available at:
\url{https://github.com/kshitij3112/EvLPSNet}
Related papers
- Calibrated and Efficient Sampling-Free Confidence Estimation for LiDAR Scene Semantic Segmentation [1.8861801513235323]
We introduce a sampling-free approach for estimating well-calibrated confidence values for classification tasks.
Our approach maintains well-calibrated confidence values while achieving increased processing speed.
Our method produces underconfidence rather than overconfident predictions, an advantage for safety-critical applications.
arXiv Detail & Related papers (2024-11-18T15:13:20Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
We propose a conceptually simple yet effective method that attributes forgetting to layer-wise parameter overwriting and the resulting decision boundary distortion.
Our method achieves competitive accuracy performance, even with absolute superiority of zero exemplar buffer and 1.02x the base model.
arXiv Detail & Related papers (2024-01-17T09:01:29Z) - DUDES: Deep Uncertainty Distillation using Ensembles for Semantic
Segmentation [11.099838952805325]
Quantifying the predictive uncertainty is a promising endeavour to open up the use of deep neural networks for such applications.
We present a novel approach for efficient and reliable uncertainty estimation which we call Deep Uncertainty Distillation using Ensembles (DUDES)
DUDES applies student-teacher distillation with a Deep Ensemble to accurately approximate predictive uncertainties with a single forward pass.
arXiv Detail & Related papers (2023-03-17T08:56:27Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Uncertainty-aware Panoptic Segmentation [21.89063036529791]
We introduce the novel task of uncertainty-aware panoptic segmentation.
It aims to predict per-pixel semantic and instance segmentations, together with per-pixel uncertainty estimates.
We propose the novel top-down Evidential Panoptic Network (EvPSNet) to solve this task.
arXiv Detail & Related papers (2022-06-29T12:07:21Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
Estimating the uncertainty of a neural network plays a fundamental role in safety-critical settings.
In this work, we propose a novel sampling-free uncertainty estimation method for object detection.
We call it CertainNet, and it is the first to provide separate uncertainties for each output signal: objectness, class, location and size.
arXiv Detail & Related papers (2021-10-04T17:59:31Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution data.
It remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications.
arXiv Detail & Related papers (2021-07-01T17:59:07Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
We show how uncertainty estimation can be leveraged to enable safety critical image segmentation in autonomous driving.
We introduce a new uncertainty measure based on disagreeing predictions as measured by a dissimilarity function.
We show experimentally that our proposed approach is much less computationally intensive at inference time than competing methods.
arXiv Detail & Related papers (2021-05-28T09:23:05Z) - The Benefit of the Doubt: Uncertainty Aware Sensing for Edge Computing
Platforms [10.86298377998459]
We propose an efficient framework for predictive uncertainty estimation in NNs deployed on embedded edge systems.
The framework is built from the ground up to provide predictive uncertainty based only on one forward pass.
Our approach not only obtains robust and accurate uncertainty estimations but also outperforms state-of-the-art methods in terms of systems performance.
arXiv Detail & Related papers (2021-02-11T11:44:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.