Semantic Framework based Query Generation for Temporal Question
Answering over Knowledge Graphs
- URL: http://arxiv.org/abs/2210.04490v3
- Date: Thu, 11 May 2023 06:29:09 GMT
- Title: Semantic Framework based Query Generation for Temporal Question
Answering over Knowledge Graphs
- Authors: Wentao Ding, Hao Chen, Huayu Li, Yuzhong Qu
- Abstract summary: We propose a temporal question answering method, SF-TQA, which generates query graphs by exploring the relevant facts of mentioned entities.
Our evaluations show that SF-TQA significantly outperforms existing methods on two benchmarks over different knowledge graphs.
- Score: 19.851986862305623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Answering factual questions with temporal intent over knowledge graphs
(temporal KGQA) attracts rising attention in recent years. In the generation of
temporal queries, existing KGQA methods ignore the fact that some intrinsic
connections between events can make them temporally related, which may limit
their capability. We systematically analyze the possible interpretation of
temporal constraints and conclude the interpretation structures as the Semantic
Framework of Temporal Constraints, SF-TCons. Based on the semantic framework,
we propose a temporal question answering method, SF-TQA, which generates query
graphs by exploring the relevant facts of mentioned entities, where the
exploring process is restricted by SF-TCons. Our evaluations show that SF-TQA
significantly outperforms existing methods on two benchmarks over different
knowledge graphs.
Related papers
- Self-Improvement Programming for Temporal Knowledge Graph Question Answering [31.33908040172437]
Temporal Knowledge Graph Question Answering (TKGQA) aims to answer questions with temporal intent over Temporal Knowledge Graphs (TKGs)
Existing end-to-end methods implicitly model the time constraints by learning time-aware embeddings of questions and candidate answers.
We introduce a novel self-improvement Programming method for TKGQA (Prog-TQA)
arXiv Detail & Related papers (2024-04-02T08:14:27Z) - Multi-hop Question Answering under Temporal Knowledge Editing [9.356343796845662]
Multi-hop question answering (MQA) under knowledge editing (KE) has garnered significant attention in the era of large language models.
Existing models for MQA under KE exhibit poor performance when dealing with questions containing explicit temporal contexts.
We propose TEMPoral knowLEdge augmented Multi-hop Question Answering (TEMPLE-MQA) to address this limitation.
arXiv Detail & Related papers (2024-03-30T23:22:51Z) - Joint Multi-Facts Reasoning Network For Complex Temporal Question
Answering Over Knowledge Graph [34.44840297353777]
Temporal Knowledge Graph (TKG) is an extension of regular knowledge graph by attaching the time scope.
We propose textbfunderlineJoint textbfunderlineMulti textbfunderlineFacts textbfunderlineReasoning textbfunderlineNetwork (JMFRN)
arXiv Detail & Related papers (2024-01-04T11:34:39Z) - Towards Robust Temporal Reasoning of Large Language Models via a Multi-Hop QA Dataset and Pseudo-Instruction Tuning [73.51314109184197]
It is crucial for large language models (LLMs) to understand the concept of temporal knowledge.
We propose a complex temporal question-answering dataset Complex-TR that focuses on multi-answer and multi-hop temporal reasoning.
arXiv Detail & Related papers (2023-11-16T11:49:29Z) - Unlocking Temporal Question Answering for Large Language Models with Tailor-Made Reasoning Logic [84.59255070520673]
Large language models (LLMs) face a challenge when engaging in temporal reasoning.
We propose TempLogic, a novel framework designed specifically for temporal question-answering tasks.
arXiv Detail & Related papers (2023-05-24T10:57:53Z) - HiSMatch: Historical Structure Matching based Temporal Knowledge Graph
Reasoning [59.38797474903334]
This paper proposes the textbfHistorical textbfStructure textbfMatching (textbfHiSMatch) model.
It applies two structure encoders to capture the semantic information contained in the historical structures of the query and candidate entities.
Experiments on six benchmark datasets demonstrate the significant improvement of the proposed HiSMatch model, with up to 5.6% performance improvement in MRR, compared to the state-of-the-art baselines.
arXiv Detail & Related papers (2022-10-18T09:39:26Z) - TwiRGCN: Temporally Weighted Graph Convolution for Question Answering
over Temporal Knowledge Graphs [35.50055476282997]
We show how to generalize relational graph convolutional networks (RGCN) for temporal question answering (QA)
We propose a novel, intuitive and interpretable scheme to modulate the messages passed through a KG edge during convolution.
We evaluate the resulting system, which we call TwiRGCN, on TimeQuestions, a recently released, challenging dataset for complex temporal QA.
arXiv Detail & Related papers (2022-10-12T15:03:49Z) - Frame-Subtitle Self-Supervision for Multi-Modal Video Question Answering [73.11017833431313]
Multi-modal video question answering aims to predict correct answer and localize the temporal boundary relevant to the question.
We devise a weakly supervised question grounding (WSQG) setting, where only QA annotations are used.
We transform the correspondence between frames and subtitles to Frame-Subtitle (FS) self-supervision, which helps to optimize the temporal attention scores.
arXiv Detail & Related papers (2022-09-08T07:20:51Z) - A Benchmark for Generalizable and Interpretable Temporal Question
Answering over Knowledge Bases [67.33560134350427]
TempQA-WD is a benchmark dataset for temporal reasoning.
It is based on Wikidata, which is the most frequently curated, openly available knowledge base.
arXiv Detail & Related papers (2022-01-15T08:49:09Z) - TempoQR: Temporal Question Reasoning over Knowledge Graphs [11.054877399064804]
This paper puts forth a comprehensive embedding-based framework for answering complex questions over Knowledge Graphs.
Our method termed temporal question reasoning (TempoQR) exploits TKG embeddings to ground the question to the specific entities and time scope it refers to.
Experiments show that TempoQR improves accuracy by 25--45 percentage points on complex temporal questions over state-of-the-art approaches.
arXiv Detail & Related papers (2021-12-10T23:59:14Z) - NExT-QA:Next Phase of Question-Answering to Explaining Temporal Actions [80.60423934589515]
We introduce NExT-QA, a rigorously designed video question answering (VideoQA) benchmark.
We set up multi-choice and open-ended QA tasks targeting causal action reasoning, temporal action reasoning, and common scene comprehension.
We find that top-performing methods excel at shallow scene descriptions but are weak in causal and temporal action reasoning.
arXiv Detail & Related papers (2021-05-18T04:56:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.