Training Spiking Neural Networks with Local Tandem Learning
- URL: http://arxiv.org/abs/2210.04532v1
- Date: Mon, 10 Oct 2022 10:05:00 GMT
- Title: Training Spiking Neural Networks with Local Tandem Learning
- Authors: Qu Yang, Jibin Wu, Malu Zhang, Yansong Chua, Xinchao Wang, Haizhou Li
- Abstract summary: Spiking neural networks (SNNs) are shown to be more biologically plausible and energy efficient than their predecessors.
In this paper, we put forward a generalized learning rule, termed Local Tandem Learning (LTL)
We demonstrate rapid network convergence within five training epochs on the CIFAR-10 dataset while having low computational complexity.
- Score: 96.32026780517097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) are shown to be more biologically plausible
and energy efficient over their predecessors. However, there is a lack of an
efficient and generalized training method for deep SNNs, especially for
deployment on analog computing substrates. In this paper, we put forward a
generalized learning rule, termed Local Tandem Learning (LTL). The LTL rule
follows the teacher-student learning approach by mimicking the intermediate
feature representations of a pre-trained ANN. By decoupling the learning of
network layers and leveraging highly informative supervisor signals, we
demonstrate rapid network convergence within five training epochs on the
CIFAR-10 dataset while having low computational complexity. Our experimental
results have also shown that the SNNs thus trained can achieve comparable
accuracies to their teacher ANNs on CIFAR-10, CIFAR-100, and Tiny ImageNet
datasets. Moreover, the proposed LTL rule is hardware friendly. It can be
easily implemented on-chip to perform fast parameter calibration and provide
robustness against the notorious device non-ideality issues. It, therefore,
opens up a myriad of opportunities for training and deployment of SNN on
ultra-low-power mixed-signal neuromorphic computing chips.10
Related papers
- The Robustness of Spiking Neural Networks in Communication and its Application towards Network Efficiency in Federated Learning [6.9569682335746235]
Spiking Neural Networks (SNNs) have recently gained significant interest in on-chip learning in embedded devices.
In this paper, we explore the inherent robustness of SNNs under noisy communication in Federated Learning.
We propose a novel Federated Learning with TopK Sparsification algorithm to reduce the bandwidth usage for FL training.
arXiv Detail & Related papers (2024-09-19T13:37:18Z) - TT-SNN: Tensor Train Decomposition for Efficient Spiking Neural Network
Training [27.565726483503838]
We introduce Train Decomposition for Spiking Neural Networks (TT-SNN)
TT-SNN reduces model size through trainable weight decomposition, resulting in reduced storage, FLOPs, and latency.
We also propose a parallel computation as an alternative to the typical sequential tensor computation.
arXiv Detail & Related papers (2024-01-15T23:08:19Z) - Speed Limits for Deep Learning [67.69149326107103]
Recent advancement in thermodynamics allows bounding the speed at which one can go from the initial weight distribution to the final distribution of the fully trained network.
We provide analytical expressions for these speed limits for linear and linearizable neural networks.
Remarkably, given some plausible scaling assumptions on the NTK spectra and spectral decomposition of the labels -- learning is optimal in a scaling sense.
arXiv Detail & Related papers (2023-07-27T06:59:46Z) - Accelerating SNN Training with Stochastic Parallelizable Spiking Neurons [1.7056768055368383]
Spiking neural networks (SNN) are able to learn features while using less energy, especially on neuromorphic hardware.
Most widely used neuron in deep learning is the temporal and Fire (LIF) neuron.
arXiv Detail & Related papers (2023-06-22T04:25:27Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
We present a novel perspective on the interplay between SSL and DC paradigms.
We show that it is feasible to simultaneously learn a dense and gated sub-network from scratch in a SSL setting.
The co-evolution during pre-training of both dense and gated encoder offers a good accuracy-efficiency trade-off.
arXiv Detail & Related papers (2023-01-22T17:12:58Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models.
Recent progress in training methods has enabled successful deep SNNs on large-scale tasks with low latency.
We propose online training through time (OTTT) for SNNs, which is derived from BPTT to enable forward-in-time learning.
arXiv Detail & Related papers (2022-10-09T07:47:56Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.