BoundaryFace: A mining framework with noise label self-correction for
Face Recognition
- URL: http://arxiv.org/abs/2210.04567v1
- Date: Mon, 10 Oct 2022 11:12:24 GMT
- Title: BoundaryFace: A mining framework with noise label self-correction for
Face Recognition
- Authors: Shijie Wu and Xun Gong
- Abstract summary: We propose a novel mining framework that focuses on the relationship between a sample's ground truth class center and its nearest negative class center.
The proposed method consistently outperforms SOTA methods in various face recognition benchmarks.
- Score: 9.383955886871743
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face recognition has made tremendous progress in recent years due to the
advances in loss functions and the explosive growth in training sets size. A
properly designed loss is seen as key to extract discriminative features for
classification. Several margin-based losses have been proposed as alternatives
of softmax loss in face recognition. However, two issues remain to consider: 1)
They overlook the importance of hard sample mining for discriminative learning.
2) Label noise ubiquitously exists in large-scale datasets, which can seriously
damage the model's performance. In this paper, starting from the perspective of
decision boundary, we propose a novel mining framework that focuses on the
relationship between a sample's ground truth class center and its nearest
negative class center. Specifically, a closed-set noise label self-correction
module is put forward, making this framework work well on datasets containing a
lot of label noise. The proposed method consistently outperforms SOTA methods
in various face recognition benchmarks. Training code has been released at
https://github.com/SWJTU-3DVision/BoundaryFace.
Related papers
- Graph Anomaly Detection with Noisy Labels by Reinforcement Learning [13.135788402192215]
We propose a novel framework REGAD, i.e., REinforced Graph Anomaly Detector.
Specifically, we aim to maximize the performance improvement (AUC) of a base detector by cutting noisy edges approximated through the nodes with high-confidence labels.
arXiv Detail & Related papers (2024-07-08T13:41:21Z) - Few-shot Image Classification based on Gradual Machine Learning [6.935034849731568]
Few-shot image classification aims to accurately classify unlabeled images using only a few labeled samples.
We propose a novel approach based on the non-i.i.d paradigm of gradual machine learning (GML)
We show that the proposed approach can improve the SOTA performance by 1-5% in terms of accuracy.
arXiv Detail & Related papers (2023-07-28T12:30:41Z) - Meta Balanced Network for Fair Face Recognition [51.813457201437195]
We systematically and scientifically study bias from both data and algorithm aspects.
We propose a novel meta-learning algorithm, called Meta Balanced Network (MBN), which learns adaptive margins in large margin loss.
Extensive experiments show that MBN successfully mitigates bias and learns more balanced performance for people with different skin tones in face recognition.
arXiv Detail & Related papers (2022-05-13T10:25:44Z) - Robust Long-Tailed Learning under Label Noise [50.00837134041317]
This work investigates the label noise problem under long-tailed label distribution.
We propose a robust framework,algo, that realizes noise detection for long-tailed learning.
Our framework can naturally leverage semi-supervised learning algorithms to further improve the generalisation.
arXiv Detail & Related papers (2021-08-26T03:45:00Z) - Consensual Collaborative Training And Knowledge Distillation Based
Facial Expression Recognition Under Noisy Annotations [2.538209532048867]
This work proposes an effective training strategy in the presence of noisy labels, called as Consensual Collaborative Training (CCT) framework.
CCT co-trains three networks jointly using a convex combination of supervision loss and consistency loss.
State-of-the-art performance is reported on the benchmark FER datasets RAFDB (90.84%), FERPlus (89.99%) and AffectNet (66%)
arXiv Detail & Related papers (2021-07-10T03:37:06Z) - Noise-resistant Deep Metric Learning with Ranking-based Instance
Selection [59.286567680389766]
We propose a noise-resistant training technique for DML, which we name Probabilistic Ranking-based Instance Selection with Memory (PRISM)
PRISM identifies noisy data in a minibatch using average similarity against image features extracted from several previous versions of the neural network.
To alleviate the high computational cost brought by the memory bank, we introduce an acceleration method that replaces individual data points with the class centers.
arXiv Detail & Related papers (2021-03-30T03:22:17Z) - Frequency-aware Discriminative Feature Learning Supervised by
Single-Center Loss for Face Forgery Detection [89.43987367139724]
Face forgery detection is raising ever-increasing interest in computer vision.
Recent works have reached sound achievements, but there are still unignorable problems.
A novel frequency-aware discriminative feature learning framework is proposed in this paper.
arXiv Detail & Related papers (2021-03-16T14:17:17Z) - EvidentialMix: Learning with Combined Open-set and Closed-set Noisy
Labels [30.268962418683955]
We study a new variant of the noisy label problem that combines the open-set and closed-set noisy labels.
Our results show that our method produces superior classification results and better feature representations than previous state-of-the-art methods.
arXiv Detail & Related papers (2020-11-11T11:15:32Z) - Improving Face Recognition by Clustering Unlabeled Faces in the Wild [77.48677160252198]
We propose a novel identity separation method based on extreme value theory.
It greatly reduces the problems caused by overlapping-identity label noise.
Experiments on both controlled and real settings demonstrate our method's consistent improvements.
arXiv Detail & Related papers (2020-07-14T12:26:50Z) - Few-Shot Open-Set Recognition using Meta-Learning [72.15940446408824]
The problem of open-set recognition is considered.
A new oPen sEt mEta LEaRning (PEELER) algorithm is introduced.
arXiv Detail & Related papers (2020-05-27T23:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.