EarthNets: Empowering AI in Earth Observation
- URL: http://arxiv.org/abs/2210.04936v3
- Date: Tue, 2 Apr 2024 21:45:06 GMT
- Title: EarthNets: Empowering AI in Earth Observation
- Authors: Zhitong Xiong, Fahong Zhang, Yi Wang, Yilei Shi, Xiao Xiang Zhu,
- Abstract summary: Earth observation (EO) aims at monitoring the state of planet Earth using remote sensing data.
This paper presents a comprehensive review of more than 500 publicly published datasets.
We propose to measure, rank, and select datasets to build a new benchmark for model evaluation.
- Score: 24.160463837610074
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Earth observation (EO), aiming at monitoring the state of planet Earth using remote sensing data, is critical for improving our daily lives and living environment. With a growing number of satellites in orbit, an increasing number of datasets with diverse sensors and research domains are being published to facilitate the research of the remote sensing community. This paper presents a comprehensive review of more than 500 publicly published datasets, including research domains like agriculture, land use and land cover, disaster monitoring, scene understanding, vision-language models, foundation models, climate change, and weather forecasting. We systematically analyze these EO datasets from four aspects: volume, resolution distributions, research domains, and the correlation between datasets. Based on the dataset attributes, we propose to measure, rank, and select datasets to build a new benchmark for model evaluation. Furthermore, a new platform for EO, termed EarthNets, is released to achieve a fair and consistent evaluation of deep learning methods on remote sensing data. EarthNets supports standard dataset libraries and cutting-edge deep learning models to bridge the gap between the remote sensing and machine learning communities. Based on this platform, extensive deep-learning methods are evaluated on the new benchmark. The insightful results are beneficial to future research. The platform and dataset collections are publicly available at https://earthnets.github.io.
Related papers
- trajdata: A Unified Interface to Multiple Human Trajectory Datasets [32.93180256927027]
We present trajdata, a unified interface to multiple human trajectory datasets.
Trajdata provides a simple, uniform, and efficient representation and API for trajectory and map data.
arXiv Detail & Related papers (2023-07-26T02:45:59Z) - Ben-ge: Extending BigEarthNet with Geographical and Environmental Data [1.1377027568901037]
We present the ben-ge dataset, which supplements the BigEarthNet-MM dataset by compiling freely and globally available geographical and environmental data.
Based on this dataset, we showcase the value of combining different data modalities for the downstream tasks of patch-based land-use/land-cover classification and land-use/land-cover segmentation.
arXiv Detail & Related papers (2023-07-04T14:17:54Z) - SSL4EO-L: Datasets and Foundation Models for Landsat Imagery [8.34029977985994]
The Landsat program is the longest-running Earth observation program in history, with 50+ years of data acquisition by 8 satellites.
Despite the increasing popularity of deep learning and remote sensing, the majority of researchers still use decision trees and random forests for Landsat image analysis.
This paper introduces SSL4EO-L, the first ever dataset designed for Self-Supervised Learning for Earth Observation for the Landsat family of satellites.
arXiv Detail & Related papers (2023-06-15T18:11:20Z) - GEO-Bench: Toward Foundation Models for Earth Monitoring [139.77907168809085]
We propose a benchmark comprised of six classification and six segmentation tasks.
This benchmark will be a driver of progress across a variety of Earth monitoring tasks.
arXiv Detail & Related papers (2023-06-06T16:16:05Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
We propose an approach for creating a multi-modal and large-temporal dataset comprised of publicly available Remote Sensing data.
We use Convolutional Neural Networks (CNN) models that are capable of separating different classes of vegetation.
arXiv Detail & Related papers (2022-09-28T18:51:59Z) - EOD: The IEEE GRSS Earth Observation Database [21.824996070545616]
In the era of deep learning, annotated datasets have become a crucial asset to the remote sensing community.
EOD is an interactive online platform for cataloguing different types of datasets leveraging remote sensing imagery.
arXiv Detail & Related papers (2022-09-26T07:44:41Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
We present Embedding Earth a self-supervised contrastive pre-training method for leveraging the large availability of satellite imagery.
We observe significant improvements up to 25% absolute mIoU when pre-trained with our proposed method.
We find that learnt features can generalize between disparate regions opening up the possibility of using the proposed pre-training scheme.
arXiv Detail & Related papers (2022-03-11T16:14:14Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
We propose a self-supervised approach for pre-training deep neural networks in remote sensing.
By exploiting the correspondence between geo-tagged audio recordings and remote sensing, this is done in a completely label-free manner.
We show that our approach outperforms existing pre-training strategies for remote sensing imagery.
arXiv Detail & Related papers (2021-08-02T07:50:50Z) - Paradigm selection for Data Fusion of SAR and Multispectral Sentinel
data applied to Land-Cover Classification [63.072664304695465]
In this letter, four data fusion paradigms, based on Convolutional Neural Networks (CNNs) are analyzed and implemented.
The goals are to provide a systematic procedure for choosing the best data fusion framework, resulting in the best classification results.
The procedure has been validated for land-cover classification but it can be transferred to other cases.
arXiv Detail & Related papers (2021-06-18T11:36:54Z) - Machine Learning Information Fusion in Earth Observation: A
Comprehensive Review of Methods, Applications and Data Sources [0.0]
This paper reviews the most important information fusion algorithms based on Machine Learning (ML) techniques for problems in Earth observation.
Data-driven approaches, and ML techniques in particular, are the natural choice to extract significant information from this data deluge.
arXiv Detail & Related papers (2020-12-07T13:35:08Z) - Geography-Aware Self-Supervised Learning [79.4009241781968]
We show that due to their different characteristics, a non-trivial gap persists between contrastive and supervised learning on standard benchmarks.
We propose novel training methods that exploit the spatially aligned structure of remote sensing data.
Our experiments show that our proposed method closes the gap between contrastive and supervised learning on image classification, object detection and semantic segmentation for remote sensing.
arXiv Detail & Related papers (2020-11-19T17:29:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.