Misspecified Phase Retrieval with Generative Priors
- URL: http://arxiv.org/abs/2210.05571v1
- Date: Tue, 11 Oct 2022 16:04:11 GMT
- Title: Misspecified Phase Retrieval with Generative Priors
- Authors: Zhaoqiang Liu, Xinshao Wang, Jiulong Liu
- Abstract summary: We estimate an $n$-dimensional signal $mathbfx$ from $m$ i.i.d.realizations of the single index model $y.
We show that both steps enjoy a statistical rate of order $sqrt(klog L)cdot (log m)/m$ under suitable conditions.
- Score: 15.134280834597865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study phase retrieval under model misspecification and
generative priors. In particular, we aim to estimate an $n$-dimensional signal
$\mathbf{x}$ from $m$ i.i.d.~realizations of the single index model $y =
f(\mathbf{a}^T\mathbf{x})$, where $f$ is an unknown and possibly random
nonlinear link function and $\mathbf{a} \in \mathbb{R}^n$ is a standard
Gaussian vector. We make the assumption
$\mathrm{Cov}[y,(\mathbf{a}^T\mathbf{x})^2] \ne 0$, which corresponds to the
misspecified phase retrieval problem. In addition, the underlying signal
$\mathbf{x}$ is assumed to lie in the range of an $L$-Lipschitz continuous
generative model with bounded $k$-dimensional inputs. We propose a two-step
approach, for which the first step plays the role of spectral initialization
and the second step refines the estimated vector produced by the first step
iteratively. We show that both steps enjoy a statistical rate of order
$\sqrt{(k\log L)\cdot (\log m)/m}$ under suitable conditions. Experiments on
image datasets are performed to demonstrate that our approach performs on par
with or even significantly outperforms several competing methods.
Related papers
- Sample and Computationally Efficient Robust Learning of Gaussian Single-Index Models [37.42736399673992]
A single-index model (SIM) is a function of the form $sigma(mathbfwast cdot mathbfx)$, where $sigma: mathbbR to mathbbR$ is a known link function and $mathbfwast$ is a hidden unit vector.
We show that a proper learner attains $L2$-error of $O(mathrmOPT)+epsilon$, where $
arXiv Detail & Related papers (2024-11-08T17:10:38Z) - Provable Acceleration of Nesterov's Accelerated Gradient for Rectangular Matrix Factorization and Linear Neural Networks [46.04785603483612]
We prove that Nesterov's accelerated gradient attains an complexity $O(kappalogfrac1epsilon)$.
In particular, we prove that NAG can also attain an accelerated linear convergence rate.
arXiv Detail & Related papers (2024-10-12T20:33:37Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Provably learning a multi-head attention layer [55.2904547651831]
Multi-head attention layer is one of the key components of the transformer architecture that sets it apart from traditional feed-forward models.
In this work, we initiate the study of provably learning a multi-head attention layer from random examples.
We prove computational lower bounds showing that in the worst case, exponential dependence on $m$ is unavoidable.
arXiv Detail & Related papers (2024-02-06T15:39:09Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Solving Quadratic Systems with Full-Rank Matrices Using Sparse or Generative Priors [33.0212223058894]
The problem of recovering a signal from a quadratic system $y_i=boldsymbol xtopboldsymbol A_iboldsymbol x, i=1,ldots,m$ with full-rank matrices $boldsymbol A_i$ frequently arises in applications such as unassigned distance geometry and sub-wavelength imaging.
This paper addresses the high-dimensional case where $mll n$ incorporating by prior knowledge of $boldsymbol x$.
arXiv Detail & Related papers (2023-09-16T16:00:07Z) - Near Optimal Heteroscedastic Regression with Symbiotic Learning [29.16456701187538]
We consider the problem of heteroscedastic linear regression.
We can estimate $mathbfw*$ in squared norm up to an error of $tildeOleft(|mathbff*|2cdot left(frac1n + left(dnright)2right)$ and prove a matching lower bound.
arXiv Detail & Related papers (2023-06-25T16:32:00Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Structure Learning in Graphical Models from Indirect Observations [17.521712510832558]
This paper considers learning of the graphical structure of a $p$-dimensional random vector $X in Rp$ using both parametric and non-parametric methods.
Under mild conditions, we show that our graph-structure estimator can obtain the correct structure.
arXiv Detail & Related papers (2022-05-06T19:24:44Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.