Social Influence Dialogue Systems: A Scoping Survey of the Efforts
Towards Influence Capabilities of Dialogue Systems
- URL: http://arxiv.org/abs/2210.05664v1
- Date: Tue, 11 Oct 2022 17:57:23 GMT
- Title: Social Influence Dialogue Systems: A Scoping Survey of the Efforts
Towards Influence Capabilities of Dialogue Systems
- Authors: Kushal Chawla, Weiyan Shi, Jingwen Zhang, Gale Lucas, Zhou Yu,
Jonathan Gratch
- Abstract summary: Social influence dialogue systems are capable of persuasion, negotiation, and therapy.
There exists no formal definition or category for dialogue systems with these skills.
This study serves as a comprehensive reference for social influence dialogue systems to inspire more dedicated research and discussion in this emerging area.
- Score: 50.57882213439553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dialogue systems capable of social influence such as persuasion, negotiation,
and therapy, are essential for extending the use of technology to numerous
realistic scenarios. However, existing research primarily focuses on either
task-oriented or open-domain scenarios, a categorization that has been
inadequate for capturing influence skills systematically. There exists no
formal definition or category for dialogue systems with these skills and
data-driven efforts in this direction are highly limited. In this work, we
formally define and introduce the category of \emph{social influence dialogue
systems} that influence users' cognitive and emotional responses, leading to
changes in thoughts, opinions, and behaviors through natural conversations. We
present a survey of various tasks, datasets, and methods, compiling the
progress across seven diverse domains. We discuss the commonalities and
differences between the examined systems, identify limitations, and recommend
future directions. This study serves as a comprehensive reference for social
influence dialogue systems to inspire more dedicated research and discussion in
this emerging area.
Related papers
- WavChat: A Survey of Spoken Dialogue Models [66.82775211793547]
Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain.
These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech.
Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems.
arXiv Detail & Related papers (2024-11-15T04:16:45Z) - Expanding the Role of Affective Phenomena in Multimodal Interaction
Research [57.069159905961214]
We examined over 16,000 papers from selected conferences in multimodal interaction, affective computing, and natural language processing.
We identify 910 affect-related papers and present our analysis of the role of affective phenomena in these papers.
We find limited research on how affect and emotion predictions might be used by AI systems to enhance machine understanding of human social behaviors and cognitive states.
arXiv Detail & Related papers (2023-05-18T09:08:39Z) - A Survey on Proactive Dialogue Systems: Problems, Methods, and Prospects [100.75759050696355]
We provide a comprehensive overview of the prominent problems and advanced designs for conversational agent's proactivity in different types of dialogues.
We discuss challenges that meet the real-world application needs but require a greater research focus in the future.
arXiv Detail & Related papers (2023-05-04T11:38:49Z) - Empathetic Conversational Systems: A Review of Current Advances, Gaps,
and Opportunities [2.741266294612776]
A growing number of studies have recognized the benefits of empathy and started to incorporate empathy in conversational systems.
This paper examines this rapidly growing field using five review dimensions.
arXiv Detail & Related papers (2022-05-09T05:19:48Z) - A Review of Dialogue Systems: From Trained Monkeys to Stochastic Parrots [0.0]
We aim to deploy artificial intelligence to build automated dialogue agents that can converse with humans.
We present a broad overview of methods developed to build dialogue systems over the years.
arXiv Detail & Related papers (2021-11-02T08:07:55Z) - Utterance-level Dialogue Understanding: An Empirical Study [43.35258958775454]
This paper explores and quantify the role of context for different aspects of a dialogue.
Specifically, we employ various perturbations to distort the context of a given utterance.
This provides us with insights into the fundamental contextual controlling factors of different aspects of a dialogue.
arXiv Detail & Related papers (2020-09-29T09:50:21Z) - Recent Advances and Challenges in Task-oriented Dialog System [63.82055978899631]
Task-oriented dialog systems are attracting more and more attention in academic and industrial communities.
We discuss three critical topics for task-oriented dialog systems: (1) improving data efficiency to facilitate dialog modeling in low-resource settings, (2) modeling multi-turn dynamics for dialog policy learning, and (3) integrating domain knowledge into the dialog model.
arXiv Detail & Related papers (2020-03-17T01:34:56Z) - Attention over Parameters for Dialogue Systems [69.48852519856331]
We learn a dialogue system that independently parameterizes different dialogue skills, and learns to select and combine each of them through Attention over Parameters (AoP)
The experimental results show that this approach achieves competitive performance on a combined dataset of MultiWOZ, In-Car Assistant, and Persona-Chat.
arXiv Detail & Related papers (2020-01-07T03:10:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.