Deep Active Ensemble Sampling For Image Classification
- URL: http://arxiv.org/abs/2210.05770v1
- Date: Tue, 11 Oct 2022 20:20:20 GMT
- Title: Deep Active Ensemble Sampling For Image Classification
- Authors: Salman Mohamadi, Gianfranco Doretto, Donald A. Adjeroh
- Abstract summary: Active learning frameworks aim to reduce the cost of data annotation by actively requesting the labeling for the most informative data points.
Some proposed approaches include uncertainty-based techniques, geometric methods, implicit combination of uncertainty-based and geometric approaches.
We present an innovative integration of recent progress in both uncertainty-based and geometric frameworks to enable an efficient exploration/exploitation trade-off in sample selection strategy.
Our framework provides two advantages: (1) accurate posterior estimation, and (2) tune-able trade-off between computational overhead and higher accuracy.
- Score: 8.31483061185317
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional active learning (AL) frameworks aim to reduce the cost of data
annotation by actively requesting the labeling for the most informative data
points. However, introducing AL to data hungry deep learning algorithms has
been a challenge. Some proposed approaches include uncertainty-based
techniques, geometric methods, implicit combination of uncertainty-based and
geometric approaches, and more recently, frameworks based on semi/self
supervised techniques. In this paper, we address two specific problems in this
area. The first is the need for efficient exploitation/exploration trade-off in
sample selection in AL. For this, we present an innovative integration of
recent progress in both uncertainty-based and geometric frameworks to enable an
efficient exploration/exploitation trade-off in sample selection strategy. To
this end, we build on a computationally efficient approximate of Thompson
sampling with key changes as a posterior estimator for uncertainty
representation. Our framework provides two advantages: (1) accurate posterior
estimation, and (2) tune-able trade-off between computational overhead and
higher accuracy. The second problem is the need for improved training protocols
in deep AL. For this, we use ideas from semi/self supervised learning to
propose a general approach that is independent of the specific AL technique
being used. Taken these together, our framework shows a significant improvement
over the state-of-the-art, with results that are comparable to the performance
of supervised-learning under the same setting. We show empirical results of our
framework, and comparative performance with the state-of-the-art on four
datasets, namely, MNIST, CIFAR10, CIFAR100 and ImageNet to establish a new
baseline in two different settings.
Related papers
- A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - Model Predictive Control with Self-supervised Representation Learning [13.225264876433528]
We propose the use of a reconstruction function within the TD-MPC framework, so that the agent can reconstruct the original observation.
Our proposed addition of another loss term leads to improved performance on both state- and image-based tasks.
arXiv Detail & Related papers (2023-04-14T16:02:04Z) - Improving Few-Shot Generalization by Exploring and Exploiting Auxiliary
Data [100.33096338195723]
We focus on Few-shot Learning with Auxiliary Data (FLAD)
FLAD assumes access to auxiliary data during few-shot learning in hopes of improving generalization.
We propose two algorithms -- EXP3-FLAD and UCB1-FLAD -- and compare them with prior FLAD methods that either explore or exploit.
arXiv Detail & Related papers (2023-02-01T18:59:36Z) - Bi-level Alignment for Cross-Domain Crowd Counting [113.78303285148041]
Current methods rely on external data for training an auxiliary task or apply an expensive coarse-to-fine estimation.
We develop a new adversarial learning based method, which is simple and efficient to apply.
We evaluate our approach on five real-world crowd counting benchmarks, where we outperform existing approaches by a large margin.
arXiv Detail & Related papers (2022-05-12T02:23:25Z) - Interpolation-based Contrastive Learning for Few-Label Semi-Supervised
Learning [43.51182049644767]
Semi-supervised learning (SSL) has long been proved to be an effective technique to construct powerful models with limited labels.
Regularization-based methods which force the perturbed samples to have similar predictions with the original ones have attracted much attention.
We propose a novel contrastive loss to guide the embedding of the learned network to change linearly between samples.
arXiv Detail & Related papers (2022-02-24T06:00:05Z) - Improving Federated Relational Data Modeling via Basis Alignment and
Weight Penalty [18.096788806121754]
Federated learning (FL) has attracted increasing attention in recent years.
We present a modified version of the graph neural network algorithm that performs federated modeling over Knowledge Graph (KG)
We propose a novel optimization algorithm, named FedAlign, with 1) optimal transportation (OT) for on-client personalization and 2) weight constraint to speed up the convergence.
Empirical results show that our proposed method outperforms the state-of-the-art FL methods, such as FedAVG and FedProx, with better convergence.
arXiv Detail & Related papers (2020-11-23T12:52:18Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
Federated Learning (FL) has become a popular paradigm for learning from distributed data.
To effectively utilize data at different devices without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a "computation then aggregation" (CTA) model.
arXiv Detail & Related papers (2020-05-22T23:07:42Z) - Generalized Reinforcement Meta Learning for Few-Shot Optimization [3.7675996866306845]
We present a generic and flexible Reinforcement Learning (RL) based meta-learning framework for the problem of few-shot learning.
Our framework could be easily extended to do network architecture search.
arXiv Detail & Related papers (2020-05-04T03:21:05Z) - Pairwise Similarity Knowledge Transfer for Weakly Supervised Object
Localization [53.99850033746663]
We study the problem of learning localization model on target classes with weakly supervised image labels.
In this work, we argue that learning only an objectness function is a weak form of knowledge transfer.
Experiments on the COCO and ILSVRC 2013 detection datasets show that the performance of the localization model improves significantly with the inclusion of pairwise similarity function.
arXiv Detail & Related papers (2020-03-18T17:53:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.