Phantom -- A RL-driven multi-agent framework to model complex systems
- URL: http://arxiv.org/abs/2210.06012v3
- Date: Fri, 19 May 2023 17:02:55 GMT
- Title: Phantom -- A RL-driven multi-agent framework to model complex systems
- Authors: Leo Ardon, Jared Vann, Deepeka Garg, Tom Spooner, Sumitra Ganesh
- Abstract summary: Phantom is an RL-driven framework for agent-based modelling of complex multi-agent systems.
It aims to provide the tools to simplify the ABM specification in a MARL-compatible way.
We present these features, their design rationale and present two new environments leveraging the framework.
- Score: 1.0499611180329804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Agent based modelling (ABM) is a computational approach to modelling complex
systems by specifying the behaviour of autonomous decision-making components or
agents in the system and allowing the system dynamics to emerge from their
interactions. Recent advances in the field of Multi-agent reinforcement
learning (MARL) have made it feasible to study the equilibrium of complex
environments where multiple agents learn simultaneously. However, most ABM
frameworks are not RL-native, in that they do not offer concepts and interfaces
that are compatible with the use of MARL to learn agent behaviours. In this
paper, we introduce a new open-source framework, Phantom, to bridge the gap
between ABM and MARL. Phantom is an RL-driven framework for agent-based
modelling of complex multi-agent systems including, but not limited to economic
systems and markets. The framework aims to provide the tools to simplify the
ABM specification in a MARL-compatible way - including features to encode
dynamic partial observability, agent utility functions, heterogeneity in agent
preferences or types, and constraints on the order in which agents can act
(e.g. Stackelberg games, or more complex turn-taking environments). In this
paper, we present these features, their design rationale and present two new
environments leveraging the framework.
Related papers
- AgentSquare: Automatic LLM Agent Search in Modular Design Space [16.659969168343082]
Large Language Models (LLMs) have led to a rapid growth of agentic systems capable of handling a wide range of complex tasks.
We introduce a new research problem: Modularized LLM Agent Search (MoLAS)
arXiv Detail & Related papers (2024-10-08T15:52:42Z) - LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents [0.0]
We propose a novel LLM-based Agent Unified Modeling Framework (LLM-Agent-UMF)
Our framework distinguishes between the different components of an LLM-based agent, setting LLMs and tools apart from a new element, the core-agent.
We evaluate our framework by applying it to thirteen state-of-the-art agents, thereby demonstrating its alignment with their functionalities.
arXiv Detail & Related papers (2024-09-17T17:54:17Z) - Very Large-Scale Multi-Agent Simulation in AgentScope [112.98986800070581]
We develop new features and components for AgentScope, a user-friendly multi-agent platform.
We propose an actor-based distributed mechanism towards great scalability and high efficiency.
We also provide a web-based interface for conveniently monitoring and managing a large number of agents.
arXiv Detail & Related papers (2024-07-25T05:50:46Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgent is a generic method to automatically extend expert agents to multi-agent systems via the evolutionary algorithm.
We show that EvoAgent can automatically generate multiple expert agents and significantly enhance the task-solving capabilities of LLM-based agents.
arXiv Detail & Related papers (2024-06-20T11:49:23Z) - AgentLite: A Lightweight Library for Building and Advancing
Task-Oriented LLM Agent System [91.41155892086252]
We open-source a new AI agent library, AgentLite, which simplifies research investigation into LLM agents.
AgentLite is a task-oriented framework designed to enhance the ability of agents to break down tasks.
We introduce multiple practical applications developed with AgentLite to demonstrate its convenience and flexibility.
arXiv Detail & Related papers (2024-02-23T06:25:20Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScope is a developer-centric multi-agent platform with message exchange as its core communication mechanism.
The abundant syntactic tools, built-in agents and service functions, user-friendly interfaces for application demonstration and utility monitor, zero-code programming workstation, and automatic prompt tuning mechanism significantly lower the barriers to both development and deployment.
arXiv Detail & Related papers (2024-02-21T04:11:28Z) - Multi-Agent Collaboration: Harnessing the Power of Intelligent LLM
Agents [0.0]
We present a novel framework for enhancing the capabilities of large language models (LLMs) by leveraging the power of multi-agent systems.
Our framework introduces a collaborative environment where multiple intelligent agent components, each with distinctive attributes and roles, work together to handle complex tasks more efficiently and effectively.
arXiv Detail & Related papers (2023-06-05T23:55:37Z) - A Unified and Efficient Coordinating Framework for Autonomous DBMS
Tuning [34.85351481228439]
We propose a unified coordinating framework to efficiently utilize existing ML-based agents.
We show that it can effectively utilize different ML-based agents and find better configurations with 1.414.1X speedups on the workload execution time.
arXiv Detail & Related papers (2023-03-10T05:27:23Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency.
We propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem.
Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines.
arXiv Detail & Related papers (2022-11-29T17:10:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.