Focusing on Context is NICE: Improving Overshadowed Entity
Disambiguation
- URL: http://arxiv.org/abs/2210.06164v1
- Date: Wed, 12 Oct 2022 13:05:37 GMT
- Title: Focusing on Context is NICE: Improving Overshadowed Entity
Disambiguation
- Authors: Vera Provatorova, Simone Tedeschi, Svitlana Vakulenko, Roberto
Navigli, Evangelos Kanoulas
- Abstract summary: NICE uses entity type information to leverage context and avoid over-relying on the frequency-based prior.
Our experiments show that NICE achieves the best performance results on the overshadowed entities while still performing competitively on the frequent entities.
- Score: 43.82625203429496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entity disambiguation (ED) is the task of mapping an ambiguous entity mention
to the corresponding entry in a structured knowledge base. Previous research
showed that entity overshadowing is a significant challenge for existing ED
models: when presented with an ambiguous entity mention, the models are much
more likely to rank a more frequent yet less contextually relevant entity at
the top. Here, we present NICE, an iterative approach that uses entity type
information to leverage context and avoid over-relying on the frequency-based
prior. Our experiments show that NICE achieves the best performance results on
the overshadowed entities while still performing competitively on the frequent
entities.
Related papers
- OneNet: A Fine-Tuning Free Framework for Few-Shot Entity Linking via Large Language Model Prompting [49.655711022673046]
OneNet is an innovative framework that utilizes the few-shot learning capabilities of Large Language Models (LLMs) without the need for fine-tuning.
OneNet is structured around three key components prompted by LLMs: (1) an entity reduction processor that simplifies inputs by summarizing and filtering out irrelevant entities, (2) a dual-perspective entity linker that combines contextual cues and prior knowledge for precise entity linking, and (3) an entity consensus judger that employs a unique consistency algorithm to alleviate the hallucination in the entity linking reasoning.
arXiv Detail & Related papers (2024-10-10T02:45:23Z) - Entity Disambiguation via Fusion Entity Decoding [68.77265315142296]
We propose an encoder-decoder model to disambiguate entities with more detailed entity descriptions.
We observe +1.5% improvements in end-to-end entity linking in the GERBIL benchmark compared with EntQA.
arXiv Detail & Related papers (2024-04-02T04:27:54Z) - Coherent Entity Disambiguation via Modeling Topic and Categorical
Dependency [87.16283281290053]
Previous entity disambiguation (ED) methods adopt a discriminative paradigm, where prediction is made based on matching scores between mention context and candidate entities.
We propose CoherentED, an ED system equipped with novel designs aimed at enhancing the coherence of entity predictions.
We achieve new state-of-the-art results on popular ED benchmarks, with an average improvement of 1.3 F1 points.
arXiv Detail & Related papers (2023-11-06T16:40:13Z) - Modeling Entities as Semantic Points for Visual Information Extraction
in the Wild [55.91783742370978]
We propose an alternative approach to precisely and robustly extract key information from document images.
We explicitly model entities as semantic points, i.e., center points of entities are enriched with semantic information describing the attributes and relationships of different entities.
The proposed method can achieve significantly enhanced performance on entity labeling and linking, compared with previous state-of-the-art models.
arXiv Detail & Related papers (2023-03-23T08:21:16Z) - NASTyLinker: NIL-Aware Scalable Transformer-based Entity Linker [2.3605348648054463]
We introduce an EL approach that is aware of NIL-entities and produces corresponding mention clusters while maintaining high linking performance for known entities.
We show the effectiveness and scalability of NASTyLinker on NILK, a dataset that is explicitly constructed to evaluate EL with respect to NIL-entities.
arXiv Detail & Related papers (2023-03-08T08:08:57Z) - GE-Blender: Graph-Based Knowledge Enhancement for Blender [3.8841367260456487]
Unseen entities can have a large impact on the dialogue generation task.
We construct a graph by extracting entity nodes in them, enhancing the representation of the context.
We add the named entity tag prediction task to apply the problem that the unseen entity does not exist in the graph.
arXiv Detail & Related papers (2023-01-30T13:00:20Z) - Entity Disambiguation with Entity Definitions [50.01142092276296]
Local models have recently attained astounding performances in Entity Disambiguation (ED)
Previous works limited their studies to using, as the textual representation of each candidate, only its Wikipedia title.
In this paper, we address this limitation and investigate to what extent more expressive textual representations can mitigate it.
We report a new state of the art on 2 out of 6 benchmarks we consider and strongly improve the generalization capability over unseen patterns.
arXiv Detail & Related papers (2022-10-11T17:46:28Z) - MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity
Representations [28.28940043641958]
We propose a novel approach for entity retrieval that constructs multi-view representations for entity descriptions and approximates the optimal view for mentions via a searching method.
Our method achieves the state-of-the-art performance on ZESHEL and improves the quality of candidates on three standard Entity Linking datasets.
arXiv Detail & Related papers (2021-09-13T05:51:45Z) - Entity Linking and Discovery via Arborescence-based Supervised
Clustering [35.93568319872986]
We present novel training and inference procedures that fully utilize mention-to-mention affinities.
We show that this method gracefully extends to entity discovery.
We evaluate our approach on the Zero-Shot Entity Linking dataset and MedMentions, the largest publicly available biomedical dataset.
arXiv Detail & Related papers (2021-09-02T23:05:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.