Zero-Shot On-the-Fly Event Schema Induction
- URL: http://arxiv.org/abs/2210.06254v2
- Date: Mon, 27 Mar 2023 14:11:29 GMT
- Title: Zero-Shot On-the-Fly Event Schema Induction
- Authors: Rotem Dror, Haoyu Wang, and Dan Roth
- Abstract summary: We present a new approach in which large language models are utilized to generate source documents that allow predicting, given a high-level event definition, the specific events, arguments, and relations between them.
Using our model, complete schemas on any topic can be generated on-the-fly without any manual data collection, i.e., in a zero-shot manner.
- Score: 61.91468909200566
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: What are the events involved in a pandemic outbreak? What steps should be
taken when planning a wedding? The answers to these questions can be found by
collecting many documents on the complex event of interest, extracting relevant
information, and analyzing it. We present a new approach in which large
language models are utilized to generate source documents that allow
predicting, given a high-level event definition, the specific events,
arguments, and relations between them to construct a schema that describes the
complex event in its entirety. Using our model, complete schemas on any topic
can be generated on-the-fly without any manual data collection, i.e., in a
zero-shot manner. Moreover, we develop efficient methods to extract pertinent
information from texts and demonstrate in a series of experiments that these
schemas are considered to be more complete than human-curated ones in the
majority of examined scenarios. Finally, we show that this framework is
comparable in performance with previous supervised schema induction methods
that rely on collecting real texts while being more general and flexible
without the need for a predefined ontology.
Related papers
- Write Summary Step-by-Step: A Pilot Study of Stepwise Summarization [48.57273563299046]
We propose the task of Stepwise Summarization, which aims to generate a new appended summary each time a new document is proposed.
The appended summary should not only summarize the newly added content but also be coherent with the previous summary.
We show that SSG achieves state-of-the-art performance in terms of both automatic metrics and human evaluations.
arXiv Detail & Related papers (2024-06-08T05:37:26Z) - Prompt-based Graph Model for Joint Liberal Event Extraction and Event Schema Induction [1.3154296174423619]
Events are essential components of speech and texts, describing the changes in the state of entities.
The event extraction task aims to identify and classify events and find their participants according to event schemas.
The researchers propose Liberal Event Extraction (LEE), which aims to extract events and discover event schemas simultaneously.
arXiv Detail & Related papers (2024-03-19T07:56:42Z) - Drafting Event Schemas using Language Models [48.81285141287434]
We look at the process of creating such schemas to describe complex events.
Our focus is on whether we can achieve sufficient diversity and recall of key events.
We show that large language models are able to achieve moderate recall against schemas taken from two different datasets.
arXiv Detail & Related papers (2023-05-24T07:57:04Z) - TAGPRIME: A Unified Framework for Relational Structure Extraction [71.88926365652034]
TAGPRIME is a sequence tagging model that appends priming words about the information of the given condition to the input text.
With the self-attention mechanism in pre-trained language models, the priming words make the output contextualized representations contain more information about the given condition.
Extensive experiments and analyses on three different tasks that cover ten datasets across five different languages demonstrate the generality and effectiveness of TAGPRIME.
arXiv Detail & Related papers (2022-05-25T08:57:46Z) - Unsupervised Summarization with Customized Granularities [76.26899748972423]
We propose the first unsupervised multi-granularity summarization framework, GranuSum.
By inputting different numbers of events, GranuSum is capable of producing multi-granular summaries in an unsupervised manner.
arXiv Detail & Related papers (2022-01-29T05:56:35Z) - Aspect-Oriented Summarization through Query-Focused Extraction [23.62412515574206]
Real users' needs often fall more closely into aspects, broad topics in a dataset the user is interested in rather than specific queries.
We benchmark extractive query-focused training schemes, and propose a contrastive augmentation approach to train the model.
We evaluate on two aspect-oriented datasets and find this approach yields focused summaries, better than those from a generic summarization system.
arXiv Detail & Related papers (2021-10-15T18:06:21Z) - Text Summarization with Latent Queries [60.468323530248945]
We introduce LaQSum, the first unified text summarization system that learns Latent Queries from documents for abstractive summarization with any existing query forms.
Under a deep generative framework, our system jointly optimize a latent query model and a conditional language model, allowing users to plug-and-play queries of any type at test time.
Our system robustly outperforms strong comparison systems across summarization benchmarks with different query types, document settings, and target domains.
arXiv Detail & Related papers (2021-05-31T21:14:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.