A Self-attention Guided Multi-scale Gradient GAN for Diversified X-ray
Image Synthesis
- URL: http://arxiv.org/abs/2210.06334v1
- Date: Sun, 9 Oct 2022 13:17:17 GMT
- Title: A Self-attention Guided Multi-scale Gradient GAN for Diversified X-ray
Image Synthesis
- Authors: Muhammad Muneeb Saad, Mubashir Husain Rehmani, and Ruairi O'Reilly
- Abstract summary: Generative Adversarial Networks (GANs) are utilized to address the data limitation problem via the generation of synthetic images.
Training challenges such as mode collapse, non-convergence, and instability degrade a GAN's performance in synthesizing diversified and high-quality images.
This work proposes an attention-guided multi-scale gradient GAN architecture to model the relationship between long-range dependencies of biomedical image features.
- Score: 0.6308539010172307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Imbalanced image datasets are commonly available in the domain of biomedical
image analysis. Biomedical images contain diversified features that are
significant in predicting targeted diseases. Generative Adversarial Networks
(GANs) are utilized to address the data limitation problem via the generation
of synthetic images. Training challenges such as mode collapse,
non-convergence, and instability degrade a GAN's performance in synthesizing
diversified and high-quality images. In this work, SAMGAN, an attention-guided
multi-scale gradient GAN architecture is proposed to model the relationship
between long-range dependencies of biomedical image features and improves the
training performance using a flow of multi-scale gradients at multiple
resolutions in the layers of generator and discriminator models. The intent is
to reduce the impact of mode collapse and stabilize the training of GAN using
an attention mechanism with multi-scale gradient learning for diversified X-ray
image synthesis. Multi-scale Structural Similarity Index Measure (MS-SSIM) and
Frechet Inception Distance (FID) are used to identify the occurrence of mode
collapse and evaluate the diversity of synthetic images generated. The proposed
architecture is compared with the multi-scale gradient GAN (MSG-GAN) to assess
the diversity of generated synthetic images. Results indicate that the SAMGAN
outperforms MSG-GAN in synthesizing diversified images as evidenced by the
MS-SSIM and FID scores.
Related papers
- Adaptive Input-image Normalization for Solving the Mode Collapse Problem in GAN-based X-ray Images [0.08192907805418582]
This work contributes an empirical demonstration of the benefits of integrating the adaptive input-image normalization with the Deep Conversaal GAN and Auxiliary GAN to alleviate the mode collapse problems.
Results demonstrate that the DCGAN and the ACGAN with adaptive input-image normalization outperform the DCGAN and ACGAN with un-normalized X-ray images.
arXiv Detail & Related papers (2023-09-21T16:43:29Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - An Attentive-based Generative Model for Medical Image Synthesis [18.94900480135376]
We propose an attention-based dual contrast generative model, called ADC-cycleGAN, which can synthesize medical images from unpaired data with multiple slices.
The model integrates a dual contrast loss term with the CycleGAN loss to ensure that the synthesized images are distinguishable from the source domain.
Experimental results demonstrate that the proposed ADC-cycleGAN model produces comparable samples to other state-of-the-art generative models.
arXiv Detail & Related papers (2023-06-02T14:17:37Z) - Less is More: Unsupervised Mask-guided Annotated CT Image Synthesis with
Minimum Manual Segmentations [2.1785903900600316]
We propose a novel strategy for medical image synthesis, namely Unsupervised Mask (UM)-guided synthesis.
UM-guided synthesis provided high-quality synthetic images with significantly higher fidelity, variety, and utility.
arXiv Detail & Related papers (2023-03-19T20:30:35Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
Learning good representation of giga-pixel level whole slide pathology images (WSI) for downstream tasks is critical.
This paper proposes a hierarchical-based multimodal transformer framework that learns a hierarchical mapping between pathology images and corresponding genes.
Our architecture requires fewer GPU resources compared with benchmark methods while maintaining better WSI representation ability.
arXiv Detail & Related papers (2022-11-29T23:47:56Z) - SIAN: Style-Guided Instance-Adaptive Normalization for Multi-Organ
Histopathology Image Synthesis [63.845552349914186]
We propose a style-guided instance-adaptive normalization (SIAN) to synthesize realistic color distributions and textures for different organs.
The four phases work together and are integrated into a generative network to embed image semantics, style, and instance-level boundaries.
arXiv Detail & Related papers (2022-09-02T16:45:46Z) - Evaluating the Quality and Diversity of DCGAN-based Generatively
Synthesized Diabetic Retinopathy Imagery [0.07499722271664144]
Publicly available diabetic retinopathy (DR) datasets are imbalanced, containing limited numbers of images with DR.
The imbalance can be addressed using Geneversarative Adrial Networks (GANs) to augment the datasets with synthetic images.
To evaluate the quality and diversity of synthetic images, several evaluation metrics, such as Multi-Scale Structural Similarity Index (MS-SSIM), Cosine Distance (CD), and Fr't Inception Distance (FID) are used.
arXiv Detail & Related papers (2022-08-10T23:50:01Z) - MRI to PET Cross-Modality Translation using Globally and Locally Aware
GAN (GLA-GAN) for Multi-Modal Diagnosis of Alzheimer's Disease [1.7499351967216341]
generative adversarial networks (GANs) with the ability to synthesize realist images have shown great potential as an alternative to standard data augmentation techniques.
We propose a novel end-to-end, globally and locally aware image-to-image translation GAN (GLA-GAN) with a multi-path architecture that enforces both global structural integrity and fidelity to local details.
arXiv Detail & Related papers (2021-08-04T16:38:33Z) - Diffusion-Weighted Magnetic Resonance Brain Images Generation with
Generative Adversarial Networks and Variational Autoencoders: A Comparison
Study [55.78588835407174]
We show that high quality, diverse and realistic-looking diffusion-weighted magnetic resonance images can be synthesized using deep generative models.
We present two networks, the Introspective Variational Autoencoder and the Style-Based GAN, that qualify for data augmentation in the medical field.
arXiv Detail & Related papers (2020-06-24T18:00:01Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Hi-Net: Hybrid-fusion Network for Multi-modal MR Image Synthesis [143.55901940771568]
We propose a novel Hybrid-fusion Network (Hi-Net) for multi-modal MR image synthesis.
In our Hi-Net, a modality-specific network is utilized to learn representations for each individual modality.
A multi-modal synthesis network is designed to densely combine the latent representation with hierarchical features from each modality.
arXiv Detail & Related papers (2020-02-11T08:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.