Multi-Level Firing with Spiking DS-ResNet: Enabling Better and Deeper
Directly-Trained Spiking Neural Networks
- URL: http://arxiv.org/abs/2210.06386v2
- Date: Wed, 19 Apr 2023 09:09:13 GMT
- Title: Multi-Level Firing with Spiking DS-ResNet: Enabling Better and Deeper
Directly-Trained Spiking Neural Networks
- Authors: Lang Feng, Qianhui Liu, Huajin Tang, De Ma, Gang Pan
- Abstract summary: Spiking neural networks (SNNs) are neural networks with asynchronous discrete and sparse characteristics.
We propose a multi-level firing (MLF) method based on the existing spiking-suppressed residual network (spiking DS-ResNet)
- Score: 19.490903216456758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) are bio-inspired neural networks with
asynchronous discrete and sparse characteristics, which have increasingly
manifested their superiority in low energy consumption. Recent research is
devoted to utilizing spatio-temporal information to directly train SNNs by
backpropagation. However, the binary and non-differentiable properties of spike
activities force directly trained SNNs to suffer from serious gradient
vanishing and network degradation, which greatly limits the performance of
directly trained SNNs and prevents them from going deeper. In this paper, we
propose a multi-level firing (MLF) method based on the existing spatio-temporal
back propagation (STBP) method, and spiking dormant-suppressed residual network
(spiking DS-ResNet). MLF enables more efficient gradient propagation and the
incremental expression ability of the neurons. Spiking DS-ResNet can
efficiently perform identity mapping of discrete spikes, as well as provide a
more suitable connection for gradient propagation in deep SNNs. With the
proposed method, our model achieves superior performances on a non-neuromorphic
dataset and two neuromorphic datasets with much fewer trainable parameters and
demonstrates the great ability to combat the gradient vanishing and degradation
problem in deep SNNs.
Related papers
- Online Pseudo-Zeroth-Order Training of Neuromorphic Spiking Neural Networks [69.2642802272367]
Brain-inspired neuromorphic computing with spiking neural networks (SNNs) is a promising energy-efficient computational approach.
Most recent methods leverage spatial and temporal backpropagation (BP), not adhering to neuromorphic properties.
We propose a novel method, online pseudo-zeroth-order (OPZO) training.
arXiv Detail & Related papers (2024-07-17T12:09:00Z) - LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
with TTFS Coding [55.64533786293656]
We show that our algorithm can achieve a near-perfect mapping between the activation values of an ANN and the spike times of an SNN on a number of challenging AI tasks.
The study paves the way for deploying ultra-low-power TTFS-based SNNs on power-constrained edge computing platforms.
arXiv Detail & Related papers (2023-10-23T14:26:16Z) - Inherent Redundancy in Spiking Neural Networks [24.114844269113746]
Spiking Networks (SNNs) are a promising energy-efficient alternative to conventional artificial neural networks.
In this work, we focus on three key questions regarding inherent redundancy in SNNs.
We propose an Advance Attention (ASA) module to harness SNNs' redundancy.
arXiv Detail & Related papers (2023-08-16T08:58:25Z) - Gradient Scaling on Deep Spiking Neural Networks with Spike-Dependent
Local Information [2.111711135667053]
We train deep neural networks (SNNs) with spiking backpropagation (STBP) with surrogate gradient.
In this work, we proposed gradient with scaling local spike information, which is the relation between pre- and post-temporal spikes.
Considering the causality between spikes, we could enhance the training of deep SNNs.
arXiv Detail & Related papers (2023-08-01T13:58:21Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models.
Recent progress in training methods has enabled successful deep SNNs on large-scale tasks with low latency.
We propose online training through time (OTTT) for SNNs, which is derived from BPTT to enable forward-in-time learning.
arXiv Detail & Related papers (2022-10-09T07:47:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - BackEISNN: A Deep Spiking Neural Network with Adaptive Self-Feedback and
Balanced Excitatory-Inhibitory Neurons [8.956708722109415]
Spiking neural networks (SNNs) transmit information through discrete spikes, which performs well in processing spatial-temporal information.
We propose a deep spiking neural network with adaptive self-feedback and balanced excitatory and inhibitory neurons (BackEISNN)
For the MNIST, FashionMNIST, and N-MNIST datasets, our model has achieved state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T08:38:31Z) - Pruning of Deep Spiking Neural Networks through Gradient Rewiring [41.64961999525415]
Spiking Neural Networks (SNNs) have been attached great importance due to their biological plausibility and high energy-efficiency on neuromorphic chips.
Most existing methods directly apply pruning approaches in artificial neural networks (ANNs) to SNNs, which ignore the difference between ANNs and SNNs.
We propose gradient rewiring (Grad R), a joint learning algorithm of connectivity and weight for SNNs, that enables us to seamlessly optimize network structure without retrain.
arXiv Detail & Related papers (2021-05-11T10:05:53Z) - Skip-Connected Self-Recurrent Spiking Neural Networks with Joint
Intrinsic Parameter and Synaptic Weight Training [14.992756670960008]
We propose a new type of RSNN called Skip-Connected Self-Recurrent SNNs (ScSr-SNNs)
ScSr-SNNs can boost performance by up to 2.55% compared with other types of RSNNs trained by state-of-the-art BP methods.
arXiv Detail & Related papers (2020-10-23T22:27:13Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.