Task-Free Continual Learning via Online Discrepancy Distance Learning
- URL: http://arxiv.org/abs/2210.06579v1
- Date: Wed, 12 Oct 2022 20:44:09 GMT
- Title: Task-Free Continual Learning via Online Discrepancy Distance Learning
- Authors: Fei Ye and Adrian G. Bors
- Abstract summary: This paper develops a new theoretical analysis framework which provides generalization bounds based on the discrepancy distance between the visited samples and the entire information made available for training the model.
Inspired by this theoretical model, we propose a new approach enabled by the dynamic component expansion mechanism for a mixture model, namely the Online Discrepancy Distance Learning (ODDL)
- Score: 11.540150938141034
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Learning from non-stationary data streams, also called Task-Free Continual
Learning (TFCL) remains challenging due to the absence of explicit task
information. Although recently some methods have been proposed for TFCL, they
lack theoretical guarantees. Moreover, forgetting analysis during TFCL was not
studied theoretically before. This paper develops a new theoretical analysis
framework which provides generalization bounds based on the discrepancy
distance between the visited samples and the entire information made available
for training the model. This analysis gives new insights into the forgetting
behaviour in classification tasks. Inspired by this theoretical model, we
propose a new approach enabled by the dynamic component expansion mechanism for
a mixture model, namely the Online Discrepancy Distance Learning (ODDL). ODDL
estimates the discrepancy between the probabilistic representation of the
current memory buffer and the already accumulated knowledge and uses it as the
expansion signal to ensure a compact network architecture with optimal
performance. We then propose a new sample selection approach that selectively
stores the most relevant samples into the memory buffer through the
discrepancy-based measure, further improving the performance. We perform
several TFCL experiments with the proposed methodology, which demonstrate that
the proposed approach achieves the state of the art performance.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Theoretical Insights into Overparameterized Models in Multi-Task and Replay-Based Continual Learning [37.745896674964186]
Multi-task learning (MTL) aims to improve the generalization performance of a model on multiple related tasks by training it simultaneously on those tasks.
Continual learning (CL) involves adapting to new sequentially arriving tasks over time without forgetting the previously acquired knowledge.
We develop theoretical results describing the effect of various system parameters on the model's performance in an MTL setup.
Our results reveal the impact of buffer size and model capacity on the forgetting rate in a CL setup and help shed light on some of the state-of-the-art CL methods.
arXiv Detail & Related papers (2024-08-29T23:22:40Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
Online continual learning (OCL) aims to enable model learning from a non-stationary data stream to continuously acquire new knowledge as well as retain the learnt one.
Main challenge comes from the "catastrophic forgetting" issue -- the inability to well remember the learnt knowledge while learning the new ones.
arXiv Detail & Related papers (2022-11-10T05:29:43Z) - Learning an evolved mixture model for task-free continual learning [11.540150938141034]
We address the Task-Free Continual Learning (TFCL) in which a model is trained on non-stationary data streams with no explicit task information.
We introduce two simple dropout mechanisms to selectively remove stored examples in order to avoid memory overload.
arXiv Detail & Related papers (2022-07-11T16:01:27Z) - Lifelong Infinite Mixture Model Based on Knowledge-Driven Dirichlet
Process [15.350366047108103]
Recent research efforts in lifelong learning propose to grow a mixture of models to adapt to an increasing number of tasks.
We perform the theoretical analysis for lifelong learning models by deriving the risk bounds based on the discrepancy distance between the probabilistic representation of data.
Inspired by the theoretical analysis, we introduce a new lifelong learning approach, namely the Lifelong Infinite Mixture (LIMix) model.
arXiv Detail & Related papers (2021-08-25T21:06:20Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z) - Reparameterized Variational Divergence Minimization for Stable Imitation [57.06909373038396]
We study the extent to which variations in the choice of probabilistic divergence may yield more performant ILO algorithms.
We contribute a re parameterization trick for adversarial imitation learning to alleviate the challenges of the promising $f$-divergence minimization framework.
Empirically, we demonstrate that our design choices allow for ILO algorithms that outperform baseline approaches and more closely match expert performance in low-dimensional continuous-control tasks.
arXiv Detail & Related papers (2020-06-18T19:04:09Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.