Improving the Reliability for Confidence Estimation
- URL: http://arxiv.org/abs/2210.06776v1
- Date: Thu, 13 Oct 2022 06:34:23 GMT
- Title: Improving the Reliability for Confidence Estimation
- Authors: Haoxuan Qu, Yanchao Li, Lin Geng Foo, Jason Kuen, Jiuxiang Gu, Jun Liu
- Abstract summary: Confidence estimation is a task that aims to evaluate the trustworthiness of the model's prediction output during deployment.
Previous works have outlined two important qualities that a reliable confidence estimation model should possess.
We propose a meta-learning framework that can simultaneously improve upon both qualities in a confidence estimation model.
- Score: 16.952133489480776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Confidence estimation, a task that aims to evaluate the trustworthiness of
the model's prediction output during deployment, has received lots of research
attention recently, due to its importance for the safe deployment of deep
models. Previous works have outlined two important qualities that a reliable
confidence estimation model should possess, i.e., the ability to perform well
under label imbalance and the ability to handle various out-of-distribution
data inputs. In this work, we propose a meta-learning framework that can
simultaneously improve upon both qualities in a confidence estimation model.
Specifically, we first construct virtual training and testing sets with some
intentionally designed distribution differences between them. Our framework
then uses the constructed sets to train the confidence estimation model through
a virtual training and testing scheme leading it to learn knowledge that
generalizes to diverse distributions. We show the effectiveness of our
framework on both monocular depth estimation and image classification.
Related papers
- Confidence Under the Hood: An Investigation into the Confidence-Probability Alignment in Large Language Models [14.5291643644017]
We introduce the concept of Confidence-Probability Alignment.
We probe the alignment between models' internal and expressed confidence.
Among the models analyzed, OpenAI's GPT-4 showed the strongest confidence-probability alignment.
arXiv Detail & Related papers (2024-05-25T15:42:04Z) - Trust, but Verify: Using Self-Supervised Probing to Improve
Trustworthiness [29.320691367586004]
We introduce a new approach of self-supervised probing, which enables us to check and mitigate the overconfidence issue for a trained model.
We provide a simple yet effective framework, which can be flexibly applied to existing trustworthiness-related methods in a plug-and-play manner.
arXiv Detail & Related papers (2023-02-06T08:57:20Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Trusted Multi-View Classification with Dynamic Evidential Fusion [73.35990456162745]
We propose a novel multi-view classification algorithm, termed trusted multi-view classification (TMC)
TMC provides a new paradigm for multi-view learning by dynamically integrating different views at an evidence level.
Both theoretical and experimental results validate the effectiveness of the proposed model in accuracy, robustness and trustworthiness.
arXiv Detail & Related papers (2022-04-25T03:48:49Z) - Trusted Multi-View Classification [76.73585034192894]
We propose a novel multi-view classification method, termed trusted multi-view classification.
It provides a new paradigm for multi-view learning by dynamically integrating different views at an evidence level.
The proposed algorithm jointly utilizes multiple views to promote both classification reliability and robustness.
arXiv Detail & Related papers (2021-02-03T13:30:26Z) - Learning Accurate Dense Correspondences and When to Trust Them [161.76275845530964]
We aim to estimate a dense flow field relating two images, coupled with a robust pixel-wise confidence map.
We develop a flexible probabilistic approach that jointly learns the flow prediction and its uncertainty.
Our approach obtains state-of-the-art results on challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-01-05T18:54:11Z) - Uncertainty-sensitive Activity Recognition: a Reliability Benchmark and
the CARING Models [37.60817779613977]
We present the first study of how welthe confidence values of modern action recognition architectures indeed reflect the probability of the correct outcome.
We introduce a new approach which learns to transform the model output into realistic confidence estimates through an additional calibration network.
arXiv Detail & Related papers (2021-01-02T15:41:21Z) - Confidence Estimation via Auxiliary Models [47.08749569008467]
We introduce a novel target criterion for model confidence, namely the true class probability ( TCP)
We show that TCP offers better properties for confidence estimation than standard maximum class probability (MCP)
arXiv Detail & Related papers (2020-12-11T17:21:12Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.