Krylov complexity in inverted harmonic oscillator
- URL: http://arxiv.org/abs/2210.06815v4
- Date: Mon, 19 Dec 2022 06:14:24 GMT
- Title: Krylov complexity in inverted harmonic oscillator
- Authors: Seungjoo Baek
- Abstract summary: Recently, the out-of-time-ordered correlator(OTOC) and Krylov complexity have been studied actively as a measure of operator growth.
In some non-chaotic systems, it was observed that OTOC shows chaotic behavior and cannot distinguish saddle-dominated scrambling from chaotic systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, the out-of-time-ordered correlator(OTOC) and Krylov complexity have
been studied actively as a measure of operator growth. OTOC is known to exhibit
exponential growth in chaotic systems, which was confirmed in many previous
works. However, in some non-chaotic systems, it was observed that OTOC shows
chaotic behavior and cannot distinguish saddle-dominated scrambling from
chaotic systems. For K-complexity, in the universal operator growth hypothesis,
it was stated that Lanczos coefficients show linear growth in chaotic systems,
which is the fastest. But recently, it appeared that Lanczos coefficients and
K-complexity show chaotic behavior in the LMG model and cannot distinguish
saddle-dominated scrambling from chaos. In this paper, we compute Lanczos
coefficients and K-complexity in an inverted harmonic oscillator. We find that
they exhibit chaotic behavior, which agrees with the case of the LMG model. We
also analyze bounds on the quantum Lyapunov coefficient and the growth rate of
Lanczos coefficients and find that there is a difference with the chaotic
system. Microcanonical K-complexity is also analyzed and compared with the OTOC
case.
Related papers
- Krylov complexity of fermion chain in double-scaled SYK and power spectrum perspective [0.0]
We investigate Krylov complexity of the fermion chain operator which consists of multiple Majorana fermions in the double-scaled SYK (DSSYK) model with finite temperature.
Using the fact that Krylov complexity is computable from two-point functions, the analysis is performed in the limit where the two-point function becomes simple.
We confirm the exponential growth of Krylov complexity in the very low temperature regime.
arXiv Detail & Related papers (2024-07-18T08:47:05Z) - KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Operator dynamics in Lindbladian SYK: a Krylov complexity perspective [0.0]
We analytically establish the linear growth of two sets of coefficients for any generic jump operators.
We find that the Krylov complexity saturates inversely with the dissipation strength, while the dissipative timescale grows logarithmically.
arXiv Detail & Related papers (2023-11-01T18:00:06Z) - Krylov Complexity in Calabi-Yau Quantum Mechanics [0.0]
We study Krylov complexity in quantum mechanical systems derived from some well-known local toric Calabi-Yau geometries.
We find that for the Calabi-Yau models, the Lanczos coefficients grow slower than linearly for small $n$'s, consistent with the behavior of integrable models.
arXiv Detail & Related papers (2022-12-06T12:32:04Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Krylov complexity from integrability to chaos [0.0]
We apply a notion of quantum complexity, called "Krylov complexity", to study the evolution of systems from integrability to chaos.
We investigate the integrable XXZ spin chain, enriched with an integrability breaking deformation that allows one to interpolate between integrable and chaotic behavior.
We find that the chaotic system indeed approaches the RMT behavior in the appropriate symmetry class.
arXiv Detail & Related papers (2022-07-15T18:51:13Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Krylov complexity in saddle-dominated scrambling [0.0]
In semi-classical systems, the exponential growth of the out-of-time order correlator (OTOC) is believed to be the hallmark of quantum chaos.
In this work, we probe such an integrable system exhibiting saddle dominated scrambling through Krylov complexity and the associated Lanczos coefficients.
arXiv Detail & Related papers (2022-03-07T17:29:24Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.