Hierarchical Diffusion Models for Singing Voice Neural Vocoder
- URL: http://arxiv.org/abs/2210.07508v2
- Date: Tue, 18 Oct 2022 00:59:12 GMT
- Title: Hierarchical Diffusion Models for Singing Voice Neural Vocoder
- Authors: Naoya Takahashi, Mayank Kumar, Singh, Yuki Mitsufuji
- Abstract summary: We propose a hierarchical diffusion model for singing voice neural vocoders.
Experimental results show that the proposed method produces high-quality singing voices for multiple singers.
- Score: 21.118585353100634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent progress in deep generative models has improved the quality of neural
vocoders in speech domain. However, generating a high-quality singing voice
remains challenging due to a wider variety of musical expressions in pitch,
loudness, and pronunciations. In this work, we propose a hierarchical diffusion
model for singing voice neural vocoders. The proposed method consists of
multiple diffusion models operating in different sampling rates; the model at
the lowest sampling rate focuses on generating accurate low-frequency
components such as pitch, and other models progressively generate the waveform
at higher sampling rates on the basis of the data at the lower sampling rate
and acoustic features. Experimental results show that the proposed method
produces high-quality singing voices for multiple singers, outperforming
state-of-the-art neural vocoders with a similar range of computational costs.
Related papers
- SpecDiff-GAN: A Spectrally-Shaped Noise Diffusion GAN for Speech and
Music Synthesis [0.0]
We introduce SpecDiff-GAN, a neural vocoder based on HiFi-GAN.
We show the merits of our proposed model for speech and music synthesis on several datasets.
arXiv Detail & Related papers (2024-01-30T09:17:57Z) - Enhancing the vocal range of single-speaker singing voice synthesis with
melody-unsupervised pre-training [82.94349771571642]
This work proposes a melody-unsupervised multi-speaker pre-training method to enhance the vocal range of the single-speaker.
It is the first to introduce a differentiable duration regulator to improve the rhythm naturalness of the synthesized voice.
Experimental results verify that the proposed SVS system outperforms the baseline on both sound quality and naturalness.
arXiv Detail & Related papers (2023-09-01T06:40:41Z) - From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion [84.138804145918]
Deep generative models can generate high-fidelity audio conditioned on various types of representations.
These models are prone to generate audible artifacts when the conditioning is flawed or imperfect.
We propose a high-fidelity multi-band diffusion-based framework that generates any type of audio modality from low-bitrate discrete representations.
arXiv Detail & Related papers (2023-08-02T22:14:29Z) - HiddenSinger: High-Quality Singing Voice Synthesis via Neural Audio
Codec and Latent Diffusion Models [25.966328901566815]
We propose HiddenSinger, a high-quality singing voice synthesis system using neural audio and latent diffusion models.
In addition, our proposed model is extended to an unsupervised singing voice learning framework, HiddenSinger-U, to train the model.
Experimental results demonstrate that our model outperforms previous models in terms of audio quality.
arXiv Detail & Related papers (2023-06-12T01:21:41Z) - SeqDiffuSeq: Text Diffusion with Encoder-Decoder Transformers [50.90457644954857]
In this work, we apply diffusion models to approach sequence-to-sequence text generation.
We propose SeqDiffuSeq, a text diffusion model for sequence-to-sequence generation.
Experiment results illustrate the good performance on sequence-to-sequence generation in terms of text quality and inference time.
arXiv Detail & Related papers (2022-12-20T15:16:24Z) - SpecGrad: Diffusion Probabilistic Model based Neural Vocoder with
Adaptive Noise Spectral Shaping [51.698273019061645]
SpecGrad adapts the diffusion noise so that its time-varying spectral envelope becomes close to the conditioning log-mel spectrogram.
It is processed in the time-frequency domain to keep the computational cost almost the same as the conventional DDPM-based neural vocoders.
arXiv Detail & Related papers (2022-03-31T02:08:27Z) - Enhancing audio quality for expressive Neural Text-to-Speech [8.199224915764672]
We present a set of techniques that can be leveraged to enhance the signal quality of a highly-expressive voice without the use of additional data.
We show that, when combined, these techniques greatly closed the gap in perceived naturalness between the baseline system and recordings by 39% in terms of MUSHRA scores for an expressive celebrity voice.
arXiv Detail & Related papers (2021-08-13T14:32:39Z) - HiFiSinger: Towards High-Fidelity Neural Singing Voice Synthesis [153.48507947322886]
HiFiSinger is an SVS system towards high-fidelity singing voice.
It consists of a FastSpeech based acoustic model and a Parallel WaveGAN based vocoder.
Experiment results show that HiFiSinger synthesizes high-fidelity singing voices with much higher quality.
arXiv Detail & Related papers (2020-09-03T16:31:02Z) - Audio Dequantization for High Fidelity Audio Generation in Flow-based
Neural Vocoder [29.63675159839434]
Flow-based neural vocoder has shown significant improvement in real-time speech generation task.
We propose audio dequantization methods in flow-based neural vocoder for high fidelity audio generation.
arXiv Detail & Related papers (2020-08-16T09:37:18Z) - Unsupervised Cross-Domain Singing Voice Conversion [105.1021715879586]
We present a wav-to-wav generative model for the task of singing voice conversion from any identity.
Our method utilizes both an acoustic model, trained for the task of automatic speech recognition, together with melody extracted features to drive a waveform-based generator.
arXiv Detail & Related papers (2020-08-06T18:29:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.