Optimizing Vision Transformers for Medical Image Segmentation and
Few-Shot Domain Adaptation
- URL: http://arxiv.org/abs/2210.08066v1
- Date: Fri, 14 Oct 2022 19:18:52 GMT
- Title: Optimizing Vision Transformers for Medical Image Segmentation and
Few-Shot Domain Adaptation
- Authors: Qianying Liu, Chaitanya Kaul, Christos Anagnostopoulos, Roderick
Murray-Smith, Fani Deligianni
- Abstract summary: We propose Convolutional Swin-Unet (CS-Unet) transformer blocks and optimise their settings with relation to patch embedding, projection, the feed-forward network, up sampling and skip connections.
CS-Unet can be trained from scratch and inherits the superiority of convolutions in each feature process phase.
Experiments show that CS-Unet without pre-training surpasses other state-of-the-art counterparts by large margins on two medical CT and MRI datasets with fewer parameters.
- Score: 11.690799827071606
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The adaptation of transformers to computer vision is not straightforward
because the modelling of image contextual information results in quadratic
computational complexity with relation to the input features. Most of existing
methods require extensive pre-training on massive datasets such as ImageNet and
therefore their application to fields such as healthcare is less effective.
CNNs are the dominant architecture in computer vision tasks because
convolutional filters can effectively model local dependencies and reduce
drastically the parameters required. However, convolutional filters cannot
handle more complex interactions, which are beyond a small neighbour of pixels.
Furthermore, their weights are fixed after training and thus they do not take
into consideration changes in the visual input. Inspired by recent work on
hybrid visual transformers with convolutions and hierarchical transformers, we
propose Convolutional Swin-Unet (CS-Unet) transformer blocks and optimise their
settings with relation to patch embedding, projection, the feed-forward
network, up sampling and skip connections. CS-Unet can be trained from scratch
and inherits the superiority of convolutions in each feature process phase. It
helps to encode precise spatial information and produce hierarchical
representations that contribute to object concepts at various scales.
Experiments show that CS-Unet without pre-training surpasses other
state-of-the-art counterparts by large margins on two medical CT and MRI
datasets with fewer parameters. In addition, two domain-adaptation experiments
on optic disc and polyp image segmentation further prove that our method is
highly generalizable and effectively bridges the domain gap between images from
different sources.
Related papers
- TransResNet: Integrating the Strengths of ViTs and CNNs for High Resolution Medical Image Segmentation via Feature Grafting [6.987177704136503]
High-resolution images are preferable in medical imaging domain as they significantly improve the diagnostic capability of the underlying method.
Most of the existing deep learning-based techniques for medical image segmentation are optimized for input images having small spatial dimensions and perform poorly on high-resolution images.
We propose a parallel-in-branch architecture called TransResNet, which incorporates Transformer and CNN in a parallel manner to extract features from multi-resolution images independently.
arXiv Detail & Related papers (2024-10-01T18:22:34Z) - TEC-Net: Vision Transformer Embrace Convolutional Neural Networks for
Medical Image Segmentation [20.976167468217387]
We propose vision Transformer embrace convolutional neural networks for medical image segmentation (TEC-Net)
Our network has two advantages. First, dynamic deformable convolution (DDConv) is designed in the CNN branch, which not only overcomes the difficulty of adaptive feature extraction using fixed-size convolution kernels, but also solves the defect that different inputs share the same convolution kernel parameters.
Experimental results show that the proposed TEC-Net provides better medical image segmentation results than SOTA methods including CNN and Transformer networks.
arXiv Detail & Related papers (2023-06-07T01:14:16Z) - CiT-Net: Convolutional Neural Networks Hand in Hand with Vision
Transformers for Medical Image Segmentation [10.20771849219059]
We propose a novel hybrid architecture of convolutional neural networks (CNNs) and vision Transformers (CiT-Net) for medical image segmentation.
Our CiT-Net provides better medical image segmentation results than popular SOTA methods.
arXiv Detail & Related papers (2023-06-06T03:22:22Z) - ConvTransSeg: A Multi-resolution Convolution-Transformer Network for
Medical Image Segmentation [14.485482467748113]
We propose a hybrid encoder-decoder segmentation model (ConvTransSeg)
It consists of a multi-layer CNN as the encoder for feature learning and the corresponding multi-level Transformer as the decoder for segmentation prediction.
Our method achieves the best performance in terms of Dice coefficient and average symmetric surface distance measures with low model complexity and memory consumption.
arXiv Detail & Related papers (2022-10-13T14:59:23Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
Less attention vIsion Transformer builds upon the fact that convolutions, fully-connected layers, and self-attentions have almost equivalent mathematical expressions for processing image patch sequences.
The proposed LIT achieves promising performance on image recognition tasks, including image classification, object detection and instance segmentation.
arXiv Detail & Related papers (2021-05-29T05:26:07Z) - Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation [63.46694853953092]
Swin-Unet is an Unet-like pure Transformer for medical image segmentation.
tokenized image patches are fed into the Transformer-based U-shaped decoder-Decoder architecture.
arXiv Detail & Related papers (2021-05-12T09:30:26Z) - Pyramid Medical Transformer for Medical Image Segmentation [8.157373686645318]
We develop a novel method to integrate multi-scale attention and CNN feature extraction using a pyramidal network architecture, namely Pyramid Medical Transformer (PMTrans)
Experimental results on two medical image datasets, gland segmentation and MoNuSeg datasets, showed that PMTrans outperformed the latest CNN-based and transformer-based models for medical image segmentation.
arXiv Detail & Related papers (2021-04-29T23:57:20Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
Convolutional neural networks (CNNs) have been the de facto standard for nowadays 3D medical image segmentation.
We propose a novel framework that efficiently bridges a bf Convolutional neural network and a bf Transformer bf (CoTr) for accurate 3D medical image segmentation.
arXiv Detail & Related papers (2021-03-04T13:34:22Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
We study the feasibility of using Transformer-based network architectures for medical image segmentation tasks.
We propose a Gated Axial-Attention model which extends the existing architectures by introducing an additional control mechanism in the self-attention module.
To train the model effectively on medical images, we propose a Local-Global training strategy (LoGo) which further improves the performance.
arXiv Detail & Related papers (2021-02-21T18:35:14Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
Medical image segmentation is an essential prerequisite for developing healthcare systems.
On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard.
We propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation.
arXiv Detail & Related papers (2021-02-08T16:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.