Distributed Estimation and Inference for Semi-parametric Binary Response Models
- URL: http://arxiv.org/abs/2210.08393v4
- Date: Thu, 15 Aug 2024 23:31:25 GMT
- Title: Distributed Estimation and Inference for Semi-parametric Binary Response Models
- Authors: Xi Chen, Wenbo Jing, Weidong Liu, Yichen Zhang,
- Abstract summary: This paper studies the maximum score estimator of a semi-parametric binary choice model under a distributed computing environment.
An intuitive divide-and-conquer estimator is computationally expensive and restricted by a non-regular constraint on the number of machines.
- Score: 8.309294338998539
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of modern technology has enabled data collection of unprecedented size, which poses new challenges to many statistical estimation and inference problems. This paper studies the maximum score estimator of a semi-parametric binary choice model under a distributed computing environment without pre-specifying the noise distribution. An intuitive divide-and-conquer estimator is computationally expensive and restricted by a non-regular constraint on the number of machines, due to the highly non-smooth nature of the objective function. We propose (1) a one-shot divide-and-conquer estimator after smoothing the objective to relax the constraint, and (2) a multi-round estimator to completely remove the constraint via iterative smoothing. We specify an adaptive choice of kernel smoother with a sequentially shrinking bandwidth to achieve the superlinear improvement of the optimization error over the multiple iterations. The improved statistical accuracy per iteration is derived, and a quadratic convergence up to the optimal statistical error rate is established. We further provide two generalizations to handle the heterogeneity of datasets and high-dimensional problems where the parameter of interest is sparse.
Related papers
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Distributed Sketching for Randomized Optimization: Exact
Characterization, Concentration and Lower Bounds [54.51566432934556]
We consider distributed optimization methods for problems where forming the Hessian is computationally challenging.
We leverage randomized sketches for reducing the problem dimensions as well as preserving privacy and improving straggler resilience in asynchronous distributed systems.
arXiv Detail & Related papers (2022-03-18T05:49:13Z) - Semi-Supervised Quantile Estimation: Robust and Efficient Inference in High Dimensional Settings [0.5735035463793009]
We consider quantile estimation in a semi-supervised setting, characterized by two available data sets.
We propose a family of semi-supervised estimators for the response quantile(s) based on the two data sets.
arXiv Detail & Related papers (2022-01-25T10:02:23Z) - Error-Correcting Neural Networks for Two-Dimensional Curvature
Computation in the Level-Set Method [0.0]
We present an error-neural-modeling-based strategy for approximating two-dimensional curvature in the level-set method.
Our main contribution is a redesigned hybrid solver that relies on numerical schemes to enable machine-learning operations on demand.
arXiv Detail & Related papers (2022-01-22T05:14:40Z) - Distributed Sparse Regression via Penalization [5.990069843501885]
We study linear regression over a network of agents, modeled as an undirected graph (with no centralized node)
The estimation problem is formulated as the minimization of the sum of the local LASSO loss functions plus a quadratic penalty of the consensus constraint.
We show that the proximal-gradient algorithm applied to the penalized problem converges linearly up to a tolerance of the order of the centralized statistical error.
arXiv Detail & Related papers (2021-11-12T01:51:50Z) - Communication-Efficient Distributed Quantile Regression with Optimal
Statistical Guarantees [2.064612766965483]
We address the problem of how to achieve optimal inference in distributed quantile regression without stringent scaling conditions.
The difficulties are resolved through a double-smoothing approach that is applied to the local (at each data source) and global objective functions.
Despite the reliance on a delicate combination of local and global smoothing parameters, the quantile regression model is fully parametric.
arXiv Detail & Related papers (2021-10-25T17:09:59Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
We introduce an unbiased estimator of the log marginal likelihood and its gradients for latent variable models based on randomized truncation of infinite series.
We show that models trained using our estimator give better test-set likelihoods than a standard importance-sampling based approach for the same average computational cost.
arXiv Detail & Related papers (2020-04-01T11:49:30Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
We consider distributed optimization problems where forming the Hessian is computationally challenging and communication is a bottleneck.
We develop unbiased parameter averaging methods for randomized second order optimization that employ sampling and sketching of the Hessian.
We also extend the framework of second order averaging methods to introduce an unbiased distributed optimization framework for heterogeneous computing systems.
arXiv Detail & Related papers (2020-02-16T09:01:18Z) - Support recovery and sup-norm convergence rates for sparse pivotal
estimation [79.13844065776928]
In high dimensional sparse regression, pivotal estimators are estimators for which the optimal regularization parameter is independent of the noise level.
We show minimax sup-norm convergence rates for non smoothed and smoothed, single task and multitask square-root Lasso-type estimators.
arXiv Detail & Related papers (2020-01-15T16:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.