AskYourDB: An end-to-end system for querying and visualizing relational
databases using natural language
- URL: http://arxiv.org/abs/2210.08532v1
- Date: Sun, 16 Oct 2022 13:31:32 GMT
- Title: AskYourDB: An end-to-end system for querying and visualizing relational
databases using natural language
- Authors: Manu Joseph, Harsh Raj, Anubhav Yadav, Aaryamann Sharma
- Abstract summary: We propose a semantic parsing approach to address the challenge of converting complex natural language into SQL.
We modified state-of-the-art models, by various pre and post processing steps which make the significant part when a model is deployed in production.
To make the product serviceable to businesses we added an automatic visualization framework over the queried results.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Querying databases for the right information is a time consuming and
error-prone task and often requires experienced professionals for the job.
Furthermore, the user needs to have some prior knowledge about the database.
There have been various efforts to develop an intelligence which can help
business users to query databases directly. However, there has been some
successes, but very little in terms of testing and deploying those for real
world users. In this paper, we propose a semantic parsing approach to address
the challenge of converting complex natural language into SQL and institute a
product out of it. For this purpose, we modified state-of-the-art models, by
various pre and post processing steps which make the significant part when a
model is deployed in production. To make the product serviceable to businesses
we added an automatic visualization framework over the queried results.
Related papers
- Natural Language Querying System Through Entity Enrichment [0.0]
This paper focuses on a domain expert querying system over databases.
It presents a solution designed for a French enterprise interested in offering a natural language interface for its clients.
arXiv Detail & Related papers (2024-10-21T08:11:47Z) - Text2SQL is Not Enough: Unifying AI and Databases with TAG [47.45480855418987]
Table-Augmented Generation (TAG) is a paradigm for answering natural language questions over databases.
We develop benchmarks to study the TAG problem and find that standard methods answer no more than 20% of queries correctly.
arXiv Detail & Related papers (2024-08-27T00:50:14Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
Large language models (LLMs) with in-context learning have significantly improved the performance of text-to- task.
We propose RB-, a novel retrieval-based framework for in-context prompt engineering.
Experiment results demonstrate that our model achieves better performance than several competitive baselines on public datasets BIRD and Spider.
arXiv Detail & Related papers (2024-07-11T08:19:58Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
We investigate the potential of Large Language Models to enable unstructured data analytics.
We propose a new Universal Query Engine (UQE) that directly interrogates and draws insights from unstructured data collections.
arXiv Detail & Related papers (2024-06-23T06:58:55Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z) - Interactive Text-to-SQL Generation via Editable Step-by-Step
Explanations [31.3376894001311]
We introduce a new interaction mechanism that allows users to directly edit a step-by-step explanation of a query to fix errors.
Our experiments on multiple datasets, as well as a user with 24 participants, demonstrate that our approach can achieve better than multiple SOTA approaches.
arXiv Detail & Related papers (2023-05-12T10:45:29Z) - A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future
Directions [102.8606542189429]
The goal of text-to-corpora parsing is to convert a natural language (NL) question to its corresponding structured query language () based on the evidences provided by databases.
Deep neural networks have significantly advanced this task by neural generation models, which automatically learn a mapping function from an input NL question to an output query.
arXiv Detail & Related papers (2022-08-29T14:24:13Z) - Translating synthetic natural language to database queries: a polyglot
deep learning framework [0.0]
Polyglotter supports the mapping of natural language searches to database queries.
It does not require the creation of manually annotated data for training.
Our results indicate that our framework performs well on both synthetic and real databases.
arXiv Detail & Related papers (2021-04-14T17:43:51Z) - "What Do You Mean by That?" A Parser-Independent Interactive Approach
for Enhancing Text-to-SQL [49.85635994436742]
We include human in the loop and present a novel-independent interactive approach (PIIA) that interacts with users using multi-choice questions.
PIIA is capable of enhancing the text-to-domain performance with limited interaction turns by using both simulation and human evaluation.
arXiv Detail & Related papers (2020-11-09T02:14:33Z) - Data Agnostic RoBERTa-based Natural Language to SQL Query Generation [0.0]
The NL2 task aims at finding deep learning approaches to solve the problem converting by natural language questions into valid queries.
We have presented an approach with data privacy at its core.
Although we have not achieved state of the art results, we have eliminated the need for the table right from the training of the model.
arXiv Detail & Related papers (2020-10-11T13:18:46Z) - Towards a Natural Language Query Processing System [0.0]
This paper reports our study on the design and development of a natural language query interface to a backend relational database.
The novelty in the study lies in defining a graph database as a middle layer to store necessary metadata needed to transform a natural language query into structured query language.
The translation results for some sample queries yielded a 90% accuracy rate.
arXiv Detail & Related papers (2020-09-25T19:52:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.