Realistic, Animatable Human Reconstructions for Virtual Fit-On
- URL: http://arxiv.org/abs/2210.08535v1
- Date: Sun, 16 Oct 2022 13:36:24 GMT
- Title: Realistic, Animatable Human Reconstructions for Virtual Fit-On
- Authors: Gayal Kuruppu, Bumuthu Dilshan, Shehan Samarasinghe, Nipuna Madhushan,
Ranga Rodrigo
- Abstract summary: We present an end-to-end virtual try-on pipeline, that can fit different clothes on a personalized 3-D human model.
Our main idea is to construct an animatable 3-D human model and try-on different clothes in a 3-D virtual environment.
- Score: 0.7649716717097428
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an end-to-end virtual try-on pipeline, that can fit different
clothes on a personalized 3-D human model, reconstructed using a single RGB
image. Our main idea is to construct an animatable 3-D human model and try-on
different clothes in a 3-D virtual environment. The existing frame by frame
volumetric reconstruction of 3-D human models are highly resource-demanding and
do not allow clothes switching. Moreover, existing virtual fit-on systems also
lack realism due to predominantly being 2-D or not using user's features in the
reconstruction. These shortcomings are due to either the human body or clothing
model being 2-D or not having the user's facial features in the dressed model.
We solve these problems by manipulating a parametric representation of the 3-D
human body model and stitching a head model reconstructed from the actual
image. Fitting the 3-D clothing models on the parameterized human model is also
adjustable to the body shape of the input image. Our reconstruction results, in
comparison with recent existing work, are more visually-pleasing.
Related papers
- Cloth2Body: Generating 3D Human Body Mesh from 2D Clothing [54.29207348918216]
Cloth2Body needs to address new and emerging challenges raised by the partial observation of the input and the high diversity of the output.
We propose an end-to-end framework that can accurately estimate 3D body mesh parameterized by pose and shape from a 2D clothing image.
As shown by experimental results, the proposed framework achieves state-of-the-art performance and can effectively recover natural and diverse 3D body meshes from 2D images.
arXiv Detail & Related papers (2023-09-28T06:18:38Z) - Structured 3D Features for Reconstructing Controllable Avatars [43.36074729431982]
We introduce Structured 3D Features, a model based on a novel implicit 3D representation that pools pixel-aligned image features onto dense 3D points sampled from a parametric, statistical human mesh surface.
We show that our S3F model surpasses the previous state-of-the-art on various tasks, including monocular 3D reconstruction, as well as albedo and shading estimation.
arXiv Detail & Related papers (2022-12-13T18:57:33Z) - Capturing and Animation of Body and Clothing from Monocular Video [105.87228128022804]
We present SCARF, a hybrid model combining a mesh-based body with a neural radiance field.
integrating the mesh into the rendering enables us to optimize SCARF directly from monocular videos.
We demonstrate that SCARFs clothing with higher visual quality than existing methods, that the clothing deforms with changing body pose and body shape, and that clothing can be successfully transferred between avatars of different subjects.
arXiv Detail & Related papers (2022-10-04T19:34:05Z) - AvatarGen: a 3D Generative Model for Animatable Human Avatars [108.11137221845352]
AvatarGen is the first method that enables not only non-rigid human generation with diverse appearance but also full control over poses and viewpoints.
To model non-rigid dynamics, it introduces a deformation network to learn pose-dependent deformations in the canonical space.
Our method can generate animatable human avatars with high-quality appearance and geometry modeling, significantly outperforming previous 3D GANs.
arXiv Detail & Related papers (2022-08-01T01:27:02Z) - The Power of Points for Modeling Humans in Clothing [60.00557674969284]
Currently it requires an artist to create 3D human avatars with realistic clothing that can move naturally.
We show that a 3D representation can capture varied topology at high resolution and that can be learned from data.
We train a neural network with a novel local clothing geometric feature to represent the shape of different outfits.
arXiv Detail & Related papers (2021-09-02T17:58:45Z) - Neural 3D Clothes Retargeting from a Single Image [91.5030622330039]
We present a method of clothes; generating the potential poses and deformations of a given 3D clothing template model to fit onto a person in a single RGB image.
The problem is fundamentally ill-posed as attaining the ground truth data is impossible, i.e. images of people wearing the different 3D clothing template model model at exact same pose.
We propose a semi-supervised learning framework that validates the physical plausibility of 3D deformation by matching with the prescribed body-to-cloth contact points and clothing to fit onto the unlabeled silhouette.
arXiv Detail & Related papers (2021-01-29T20:50:34Z) - S3: Neural Shape, Skeleton, and Skinning Fields for 3D Human Modeling [103.65625425020129]
We represent the pedestrian's shape, pose and skinning weights as neural implicit functions that are directly learned from data.
We demonstrate the effectiveness of our approach on various datasets and show that our reconstructions outperform existing state-of-the-art methods.
arXiv Detail & Related papers (2021-01-17T02:16:56Z) - ARCH: Animatable Reconstruction of Clothed Humans [27.849315613277724]
ARCH (Animatable Reconstruction of Clothed Humans) is an end-to-end framework for accurate reconstruction of animation-ready 3D clothed humans from a monocular image.
ARCH is a learned pose-aware model that produces detailed 3D rigged full-body human avatars from a single unconstrained RGB image.
arXiv Detail & Related papers (2020-04-08T14:23:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.