Bridging the Gap between Artificial Intelligence and Artificial General
Intelligence: A Ten Commandment Framework for Human-Like Intelligence
- URL: http://arxiv.org/abs/2210.09366v1
- Date: Mon, 17 Oct 2022 19:08:15 GMT
- Title: Bridging the Gap between Artificial Intelligence and Artificial General
Intelligence: A Ten Commandment Framework for Human-Like Intelligence
- Authors: Ananta Nair and Farnoush Banaei-Kashani
- Abstract summary: We identify the ten commandments upon which human intelligence is systematically and hierarchically built.
We believe these commandments work collectively to serve as the essential ingredients that lead to the emergence of higher-order cognition and intelligence.
- Score: 2.360534864805446
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The field of artificial intelligence has seen explosive growth and
exponential success. The last phase of development showcased deep learnings
ability to solve a variety of difficult problems across a multitude of domains.
Many of these networks met and exceeded human benchmarks by becoming experts in
the domains in which they are trained. Though the successes of artificial
intelligence have begun to overshadow its failures, there is still much that
separates current artificial intelligence tools from becoming the exceptional
general learners that humans are. In this paper, we identify the ten
commandments upon which human intelligence is systematically and hierarchically
built. We believe these commandments work collectively to serve as the
essential ingredients that lead to the emergence of higher-order cognition and
intelligence. This paper discusses a computational framework that could house
these ten commandments and suggests new architectural modifications that could
lead to the development of smarter, more explainable, and generalizable
artificial systems inspired by a neuromorphic approach.
Related papers
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Scaling Artificial Intelligence for Digital Wargaming in Support of
Decision-Making [0.0]
We are developing and implementing a hierarchical reinforcement learning framework that includes a multi-model approach and dimension-invariant observation abstractions.
By advancing AI-enabled systems, we will be able to enhance all-domain awareness, improve the speed and quality of our decision cycles, offer recommendations for novel courses of action, and more rapidly counter our adversary's actions.
arXiv Detail & Related papers (2024-02-08T21:51:07Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
We propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components.
We illustrate a hybrid framework centered on ACT-R and we discuss the role of generative models in recent and future applications.
arXiv Detail & Related papers (2023-11-13T21:20:17Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
Mathematics is one of the most powerful conceptual systems developed and used by the human species.
Rapid progress in AI, particularly propelled by advances in large language models (LLMs), has sparked renewed, widespread interest in building such systems.
arXiv Detail & Related papers (2023-10-19T02:00:31Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - The Embeddings World and Artificial General Intelligence [2.28438857884398]
We argue that pre-trained embeddings play a key role in building this intelligent world.
We discuss how pre-trained embeddings facilitate achieving several characteristics of human-level intelligence.
arXiv Detail & Related papers (2022-09-14T11:56:30Z) - Making AI 'Smart': Bridging AI and Cognitive Science [0.0]
With the integration of cognitive science, the 'artificial' characteristic of Artificial Intelligence might soon be replaced with'smart'
This will help develop more powerful AI systems and simultaneously gives us a better understanding of how the human brain works.
We argue that the possibility of AI taking over human civilization is low as developing such an advanced system requires a better understanding of the human brain first.
arXiv Detail & Related papers (2021-12-31T09:30:44Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
We describe various aspects of multiple human intelligences and learning styles, which may impact on a variety of AI problem domains.
Future AI systems will be able not only to communicate with human users and each other, but also to efficiently exchange knowledge and wisdom.
arXiv Detail & Related papers (2020-08-07T21:00:13Z) - Modelos din\^amicos aplicados \`a aprendizagem de valores em
intelig\^encia artificial [0.0]
Several researchers in the area have developed a robust, beneficial, and safe concept of AI for the preservation of humanity and the environment.
It is utmost importance that artificial intelligent agents have their values aligned with human values.
Perhaps this difficulty comes from the way we are addressing the problem of expressing values using cognitive methods.
arXiv Detail & Related papers (2020-07-30T00:56:11Z) - Dynamic Cognition Applied to Value Learning in Artificial Intelligence [0.0]
Several researchers in the area are trying to develop a robust, beneficial, and safe concept of artificial intelligence.
It is of utmost importance that artificial intelligent agents have their values aligned with human values.
A possible approach to this problem would be to use theoretical models such as SED.
arXiv Detail & Related papers (2020-05-12T03:58:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.