No Pairs Left Behind: Improving Metric Learning with Regularized Triplet
Objective
- URL: http://arxiv.org/abs/2210.09506v1
- Date: Tue, 18 Oct 2022 00:56:01 GMT
- Title: No Pairs Left Behind: Improving Metric Learning with Regularized Triplet
Objective
- Authors: A. Ali Heydari, Naghmeh Rezaei, Daniel J. McDuff, Javier L. Prieto
- Abstract summary: We propose a novel formulation of the triplet objective function that improves metric learning without additional sample mining or overhead costs.
We show that our method (called No Pairs Left Behind [NPLB]) improves upon the traditional and current state-of-the-art triplet objective formulations.
- Score: 19.32706951298244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel formulation of the triplet objective function that
improves metric learning without additional sample mining or overhead costs.
Our approach aims to explicitly regularize the distance between the positive
and negative samples in a triplet with respect to the anchor-negative distance.
As an initial validation, we show that our method (called No Pairs Left Behind
[NPLB]) improves upon the traditional and current state-of-the-art triplet
objective formulations on standard benchmark datasets. To show the
effectiveness and potentials of NPLB on real-world complex data, we evaluate
our approach on a large-scale healthcare dataset (UK Biobank), demonstrating
that the embeddings learned by our model significantly outperform all other
current representations on tested downstream tasks. Additionally, we provide a
new model-agnostic single-time health risk definition that, when used in tandem
with the learned representations, achieves the most accurate prediction of
subjects' future health complications. Our results indicate that NPLB is a
simple, yet effective framework for improving existing deep metric learning
models, showcasing the potential implications of metric learning in more
complex applications, especially in the biological and healthcare domains.
Related papers
- On Machine Learning Approaches for Protein-Ligand Binding Affinity Prediction [2.874893537471256]
This study evaluates the performance of classical tree-based models and advanced neural networks in protein-ligand binding affinity prediction.
We show that combining 2D and 3D model strengths improves active learning outcomes beyond current state-of-the-art approaches.
arXiv Detail & Related papers (2024-07-15T13:06:00Z) - ACTRESS: Active Retraining for Semi-supervised Visual Grounding [52.08834188447851]
A previous study, RefTeacher, makes the first attempt to tackle this task by adopting the teacher-student framework to provide pseudo confidence supervision and attention-based supervision.
This approach is incompatible with current state-of-the-art visual grounding models, which follow the Transformer-based pipeline.
Our paper proposes the ACTive REtraining approach for Semi-Supervised Visual Grounding, abbreviated as ACTRESS.
arXiv Detail & Related papers (2024-07-03T16:33:31Z) - Rethinking Model Prototyping through the MedMNIST+ Dataset Collection [0.11999555634662634]
This work presents a benchmark for the MedMNIST+ database to diversify the evaluation landscape.
We conduct a thorough analysis of common convolutional neural networks (CNNs) and Transformer-based architectures, for medical image classification.
Our findings suggest that computationally efficient training schemes and modern foundation models hold promise in bridging the gap between expensive end-to-end training and more resource-refined approaches.
arXiv Detail & Related papers (2024-04-24T10:19:25Z) - Improving Biomedical Entity Linking with Retrieval-enhanced Learning [53.24726622142558]
$k$NN-BioEL provides a BioEL model with the ability to reference similar instances from the entire training corpus as clues for prediction.
We show that $k$NN-BioEL outperforms state-of-the-art baselines on several datasets.
arXiv Detail & Related papers (2023-12-15T14:04:23Z) - Stabilizing Subject Transfer in EEG Classification with Divergence
Estimation [17.924276728038304]
We propose several graphical models to describe an EEG classification task.
We identify statistical relationships that should hold true in an idealized training scenario.
We design regularization penalties to enforce these relationships in two stages.
arXiv Detail & Related papers (2023-10-12T23:06:52Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - Intermediate Layers Matter in Momentum Contrastive Self Supervised
Learning [1.933681537640272]
We show that bringing intermediate layers' representations of two augmented versions of an image closer together in self-supervised learning helps to improve the momentum contrastive (MoCo) method.
We analyze the models trained using our novel approach via feature similarity analysis and layer-wise probing.
arXiv Detail & Related papers (2021-10-27T22:40:41Z) - Consistency and Monotonicity Regularization for Neural Knowledge Tracing [50.92661409499299]
Knowledge Tracing (KT) tracking a human's knowledge acquisition is a central component in online learning and AI in Education.
We propose three types of novel data augmentation, coined replacement, insertion, and deletion, along with corresponding regularization losses.
Extensive experiments on various KT benchmarks show that our regularization scheme consistently improves the model performances.
arXiv Detail & Related papers (2021-05-03T02:36:29Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z) - Robustly Pre-trained Neural Model for Direct Temporal Relation
Extraction [10.832917897850361]
We studied several variants of BERT (Bidirectional Representations using Transformers)
We evaluated these methods using a direct temporal relations dataset which is a semantically focused subset of the 2012 i2b2 temporal relations challenge dataset.
Results: RoBERTa, which employs better pre-training strategies including using 10x larger corpus, has improved overall F measure by 0.0864 absolute score (on the 1.00 scale) and thus reducing the error rate by 24% relative to the previous state-of-the-art performance achieved with an SVM (support vector machine) model.
arXiv Detail & Related papers (2020-04-13T22:01:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.