Towards Domain-Independent Supervised Discourse Parsing Through Gradient
Boosting
- URL: http://arxiv.org/abs/2210.09565v1
- Date: Tue, 18 Oct 2022 03:44:27 GMT
- Title: Towards Domain-Independent Supervised Discourse Parsing Through Gradient
Boosting
- Authors: Patrick Huber and Giuseppe Carenini
- Abstract summary: We present a new, supervised paradigm directly tackling the domain adaptation issue in discourse parsing.
Specifically, we introduce the first fully supervised discourse framework designed to alleviate the domain dependency through a staged model of weak gradient classifiers.
- Score: 30.615883375573432
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Discourse analysis and discourse parsing have shown great impact on many
important problems in the field of Natural Language Processing (NLP). Given the
direct impact of discourse annotations on model performance and
interpretability, robustly extracting discourse structures from arbitrary
documents is a key task to further improve computational models in NLP. To this
end, we present a new, supervised paradigm directly tackling the domain
adaptation issue in discourse parsing. Specifically, we introduce the first
fully supervised discourse parser designed to alleviate the domain dependency
through a staged model of weak classifiers by introducing the gradient boosting
framework.
Related papers
- Cross-domain Chinese Sentence Pattern Parsing [67.1381983012038]
Sentence Pattern Structure (SPS) parsing is a syntactic analysis method primarily employed in language teaching.
Existing SPSs rely heavily on textbook corpora for training, lacking cross-domain capability.
This paper proposes an innovative approach leveraging large language models (LLMs) within a self-training framework.
arXiv Detail & Related papers (2024-02-26T05:30:48Z) - Topic-driven Distant Supervision Framework for Macro-level Discourse
Parsing [72.14449502499535]
The task of analyzing the internal rhetorical structure of texts is a challenging problem in natural language processing.
Despite the recent advances in neural models, the lack of large-scale, high-quality corpora for training remains a major obstacle.
Recent studies have attempted to overcome this limitation by using distant supervision.
arXiv Detail & Related papers (2023-05-23T07:13:51Z) - Autoregressive Structured Prediction with Language Models [73.11519625765301]
We describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs.
Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at.
arXiv Detail & Related papers (2022-10-26T13:27:26Z) - Guiding the PLMs with Semantic Anchors as Intermediate Supervision:
Towards Interpretable Semantic Parsing [57.11806632758607]
We propose to incorporate the current pretrained language models with a hierarchical decoder network.
By taking the first-principle structures as the semantic anchors, we propose two novel intermediate supervision tasks.
We conduct intensive experiments on several semantic parsing benchmarks and demonstrate that our approach can consistently outperform the baselines.
arXiv Detail & Related papers (2022-10-04T07:27:29Z) - Improving Topic Segmentation by Injecting Discourse Dependencies [29.353285741379334]
We present a discourse-aware neural topic segmentation model with the injection of above-sentence discourse dependency structures.
Our empirical study on English evaluation datasets shows that injecting above-sentence discourse structures to a neural topic segmenter can substantially improve its performances.
arXiv Detail & Related papers (2022-09-18T18:22:25Z) - Predicting Above-Sentence Discourse Structure using Distant Supervision
from Topic Segmentation [8.688675709130289]
RST-style discourse parsing plays a vital role in many NLP tasks.
Despite its importance, one of the most prevailing limitations in modern day discourse parsing is the lack of large-scale datasets.
arXiv Detail & Related papers (2021-12-12T10:16:45Z) - Improving Multi-Party Dialogue Discourse Parsing via Domain Integration [25.805553277418813]
Multi-party conversations are implicitly organized by semantic level correlations across the interactive turns.
dialogue discourse analysis can be applied to predict the dependency structure and relations between the elementary discourse units.
Existing corpora with dialogue discourse annotation are collected from specific domains with limited sample sizes.
arXiv Detail & Related papers (2021-10-09T09:36:22Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
We show that, unlike syntax, semantics is not brought to the surface by today's pretrained models.
We then use convolutional graph encoders to explicitly incorporate semantic parses into task-specific finetuning.
arXiv Detail & Related papers (2020-12-10T01:27:24Z) - SLM: Learning a Discourse Language Representation with Sentence
Unshuffling [53.42814722621715]
We introduce Sentence-level Language Modeling, a new pre-training objective for learning a discourse language representation.
We show that this feature of our model improves the performance of the original BERT by large margins.
arXiv Detail & Related papers (2020-10-30T13:33:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.