1st Place Solutions for the UVO Challenge 2022
- URL: http://arxiv.org/abs/2210.09629v1
- Date: Tue, 18 Oct 2022 06:54:37 GMT
- Title: 1st Place Solutions for the UVO Challenge 2022
- Authors: Jiajun Zhang and Boyu Chen and Zhilong Ji and Jinfeng Bai and Zonghai
Hu
- Abstract summary: The method ranks first on the 2nd Unidentified Video Objects (UVO) challenge, achieving AR@100 of 46.8, 64.7 and 32.2 in the limited data frame track, unlimited data frame track and video track respectively.
- Score: 26.625850534861414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes the approach we have taken in the challenge. We still
adopted the two-stage scheme same as the last champion, that is, detection
first and segmentation followed. We trained more powerful detector and
segmentor separately. Besides, we also perform pseudo-label training on the
test set, based on student-teacher framework and end-to-end transformer based
object detection. The method ranks first on the 2nd Unidentified Video Objects
(UVO) challenge, achieving AR@100 of 46.8, 64.7 and 32.2 in the limited data
frame track, unlimited data frame track and video track respectively.
Related papers
- PVUW 2024 Challenge on Complex Video Understanding: Methods and Results [199.5593316907284]
We add two new tracks, Complex Video Object Track based on MOSE dataset and Motion Expression guided Video track based on MeViS dataset.
In the two new tracks, we provide additional videos and annotations that feature challenging elements.
These new videos, sentences, and annotations enable us to foster the development of a more comprehensive and robust pixel-level understanding of video scenes.
arXiv Detail & Related papers (2024-06-24T17:38:58Z) - 1st Place Solution for MeViS Track in CVPR 2024 PVUW Workshop: Motion Expression guided Video Segmentation [81.50620771207329]
We investigate the effectiveness of static-dominant data and frame sampling on referring video object segmentation (RVOS)
Our solution achieves a J&F score of 0.5447 in the competition phase and ranks 1st in the MeViS track of the PVUW Challenge.
arXiv Detail & Related papers (2024-06-11T08:05:26Z) - Solution for Point Tracking Task of ICCV 1st Perception Test Challenge 2023 [50.910598799408326]
The Tracking Any Point (TAP) task tracks any physical surface through a video.
Several existing approaches have explored the TAP by considering the temporal relationships to obtain smooth point motion trajectories.
We propose a simple yet effective approach called TAP with confident static points (TAPIR+), which focuses on rectifying the tracking of the static point in the videos shot by a static camera.
arXiv Detail & Related papers (2024-03-26T13:50:39Z) - Perception Test 2023: A Summary of the First Challenge And Outcome [67.0525378209708]
The First Perception Test challenge was held as a half-day workshop alongside the IEEE/CVF International Conference on Computer Vision (ICCV) 2023.
The goal was to benchmarking state-of-the-art video models on the recently proposed Perception Test benchmark.
We summarise in this report the task descriptions, metrics, baselines, and results.
arXiv Detail & Related papers (2023-12-20T15:12:27Z) - SoccerNet 2023 Tracking Challenge -- 3rd place MOT4MOT Team Technical
Report [0.552480439325792]
The SoccerNet 2023 tracking challenge requires the detection and tracking of soccer players and the ball.
We employ a state-of-the-art online multi-object tracker and a contemporary object detector for player tracking.
Our method achieves 3rd place on the SoccerNet 2023 tracking challenge with a HOTA score of 66.27.
arXiv Detail & Related papers (2023-08-31T11:51:16Z) - The Runner-up Solution for YouTube-VIS Long Video Challenge 2022 [72.13080661144761]
We adopt the previously proposed online video instance segmentation method IDOL for this challenge.
We use pseudo labels to further help contrastive learning, so as to obtain more temporally consistent instance embedding.
The proposed method obtains 40.2 AP on the YouTube-VIS 2022 long video dataset and was ranked second in this challenge.
arXiv Detail & Related papers (2022-11-18T01:40:59Z) - The 1st-place Solution for ECCV 2022 Multiple People Tracking in Group
Dance Challenge [28.79662033029203]
We present our 1st place solution to the Group Dance Multiple People Tracking Challenge.
Based on MOTR: End-to-End Multiple-Object Tracking with Transformer, we explore: 1) detect queries as anchors, 2) tracking as query denoising, and 3) joint training on pseudo video clips generated from CrowdHuman dataset.
Our method achieves 73.4% HOTA on the DanceTrack test set, surpassing the second-place solution by +6.8% HOTA.
arXiv Detail & Related papers (2022-10-27T09:28:44Z) - Weakly Supervised Two-Stage Training Scheme for Deep Video Fight
Detection Model [0.0]
Fight detection in videos is an emerging deep learning application with today's prevalence of surveillance systems and streaming media.
Previous work has largely relied on action recognition techniques to tackle this problem.
We design the fight detection model as a composition of an action-aware feature extractor and an anomaly score generator.
arXiv Detail & Related papers (2022-09-23T08:29:16Z) - NTIRE 2021 Challenge on Quality Enhancement of Compressed Video: Dataset
and Study [95.36629866768999]
This paper introduces a novel dataset for video enhancement and studies the state-of-the-art methods of the NTIRE 2021 challenge.
The challenge is the first NTIRE challenge in this direction, with three competitions, hundreds of participants and tens of proposed solutions.
We find that the NTIRE 2021 challenge advances the state-of-the-art of quality enhancement on compressed video.
arXiv Detail & Related papers (2021-04-21T22:18:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.