Graphs, Constraints, and Search for the Abstraction and Reasoning Corpus
- URL: http://arxiv.org/abs/2210.09880v1
- Date: Tue, 18 Oct 2022 14:13:43 GMT
- Title: Graphs, Constraints, and Search for the Abstraction and Reasoning Corpus
- Authors: Yudong Xu, Elias B. Khalil, Scott Sanner
- Abstract summary: The Abstraction and Reasoning Corpus (ARC) aims at benchmarking the performance of general artificial intelligence algorithms.
The ARC's focus on broad generalization and few-shot learning has made it impossible to solve using pure machine learning.
We propose Abstract Reasoning with Graph Abstractions (ARGA), a new object-centric framework that first represents images using graphs and then performs a search for a correct program.
- Score: 19.27379168184259
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Abstraction and Reasoning Corpus (ARC) aims at benchmarking the
performance of general artificial intelligence algorithms. The ARC's focus on
broad generalization and few-shot learning has made it impossible to solve
using pure machine learning. A more promising approach has been to perform
program synthesis within an appropriately designed Domain Specific Language
(DSL). However, these too have seen limited success. We propose Abstract
Reasoning with Graph Abstractions (ARGA), a new object-centric framework that
first represents images using graphs and then performs a search for a correct
program in a DSL that is based on the abstracted graph space. The complexity of
this combinatorial search is tamed through the use of constraint acquisition,
state hashing, and Tabu search. An extensive set of experiments demonstrates
the promise of ARGA in tackling some of the complicated tasks of the ARC rather
efficiently, producing programs that are correct and easy to understand.
Related papers
- Program Synthesis using Inductive Logic Programming for the Abstraction and Reasoning Corpus [1.9662978733004604]
The Abstraction and Reasoning Corpus (ARC) is unsolvable by any Machine Learning method.
We propose a Program Synthesis system that uses Inductive Logic Programming (ILP), a branch of AI, to solve ARC.
arXiv Detail & Related papers (2024-05-10T11:22:31Z) - Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning [89.89857766491475]
We propose a complex reasoning schema over KG upon large language models (LLMs)
We augment the arbitrary first-order logical queries via binary tree decomposition to stimulate the reasoning capability of LLMs.
Experiments across widely used datasets demonstrate that LACT has substantial improvements(brings an average +5.5% MRR score) over advanced methods.
arXiv Detail & Related papers (2024-05-02T18:12:08Z) - Neural networks for abstraction and reasoning: Towards broad
generalization in machines [3.165509887826658]
We look at novel approaches for solving the Abstraction & Reasoning Corpus (ARC)
We adapt the DreamCoder neurosymbolic reasoning solver to ARC.
We present the Perceptual Abstraction and Reasoning Language (PeARL) language, which allows DreamCoder to solve ARC tasks.
We publish the arckit Python library to make future research on ARC easier.
arXiv Detail & Related papers (2024-02-05T20:48:57Z) - Generalized Planning for the Abstraction and Reasoning Corpus [10.377424252002795]
We introduce an ARC solver, Generalized Planning for Abstract Reasoning (GPAR)
It casts an ARC problem as a generalized planning (GP) problem, where a solution is formalized as a planning program with pointers.
We show how to scale up GP solvers via domain knowledge specific to ARC in the form of restrictions over the actions model, predicates, arguments and valid structure of planning programs.
arXiv Detail & Related papers (2024-01-15T02:25:00Z) - Relation-aware Ensemble Learning for Knowledge Graph Embedding [68.94900786314666]
We propose to learn an ensemble by leveraging existing methods in a relation-aware manner.
exploring these semantics using relation-aware ensemble leads to a much larger search space than general ensemble methods.
We propose a divide-search-combine algorithm RelEns-DSC that searches the relation-wise ensemble weights independently.
arXiv Detail & Related papers (2023-10-13T07:40:12Z) - ArchGym: An Open-Source Gymnasium for Machine Learning Assisted
Architecture Design [52.57999109204569]
ArchGym is an open-source framework that connects diverse search algorithms to architecture simulators.
We evaluate ArchGym across multiple vanilla and domain-specific search algorithms in designing custom memory controller, deep neural network accelerators, and custom SOC for AR/VR workloads.
arXiv Detail & Related papers (2023-06-15T06:41:23Z) - LLMs and the Abstraction and Reasoning Corpus: Successes, Failures, and
the Importance of Object-based Representations [50.431003245201644]
We show that GPT-4 is unable to "reason" perfectly within non-language domains such as the 1D-ARC or a simple ARC subset.
We propose an object-based representation that is obtained through an external tool, resulting in nearly doubling the performance on solved ARC tasks and near-perfect scores on the easier 1D-ARC.
arXiv Detail & Related papers (2023-05-26T16:32:17Z) - ShapeCoder: Discovering Abstractions for Visual Programs from
Unstructured Primitives [44.01940125080666]
We present ShapeCoder, the first system capable of taking a dataset of shapes, represented with unstructured primitives.
We show how ShapeCoder discovers a library of abstractions that capture high-level relationships, remove extraneous degrees of freedom, and achieve better dataset compression.
arXiv Detail & Related papers (2023-05-09T17:55:48Z) - Unifying Graph Contrastive Learning with Flexible Contextual Scopes [57.86762576319638]
We present a self-supervised learning method termed Unifying Graph Contrastive Learning with Flexible Contextual Scopes (UGCL for short)
Our algorithm builds flexible contextual representations with contextual scopes by controlling the power of an adjacency matrix.
Based on representations from both local and contextual scopes, distL optimises a very simple contrastive loss function for graph representation learning.
arXiv Detail & Related papers (2022-10-17T07:16:17Z) - Neural-guided, Bidirectional Program Search for Abstraction and
Reasoning [3.2348834229786885]
This paper lays the foundations for two approaches to abstraction and reasoning not based in brute-force search.
We first apply an existing program synthesis system called DreamCoder to create symbolic abstractions out of tasks solved so far.
Second, we design a reasoning algorithm motivated by the way humans approach ARC.
arXiv Detail & Related papers (2021-10-22T00:41:47Z) - Weakly Supervised Visual Semantic Parsing [49.69377653925448]
Scene Graph Generation (SGG) aims to extract entities, predicates and their semantic structure from images.
Existing SGG methods require millions of manually annotated bounding boxes for training.
We propose Visual Semantic Parsing, VSPNet, and graph-based weakly supervised learning framework.
arXiv Detail & Related papers (2020-01-08T03:46:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.