Random Orthogonalization for Federated Learning in Massive MIMO Systems
- URL: http://arxiv.org/abs/2210.09881v1
- Date: Tue, 18 Oct 2022 14:17:10 GMT
- Title: Random Orthogonalization for Federated Learning in Massive MIMO Systems
- Authors: Xizixiang Wei, Cong Shen, Jing Yang, H. Vincent Poor
- Abstract summary: We propose a novel communication design for federated learning (FL) in a massive multiple-input and multiple-output (MIMO) wireless system.
Key novelty of random orthogonalization comes from the tight coupling of FL and two unique characteristics of massive MIMO -- channel hardening and favorable propagation.
We extend this principle to the downlink communication phase and develop a simple but highly effective model broadcast method for FL.
- Score: 85.71432283670114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel communication design, termed random orthogonalization, for
federated learning (FL) in a massive multiple-input and multiple-output (MIMO)
wireless system. The key novelty of random orthogonalization comes from the
tight coupling of FL and two unique characteristics of massive MIMO -- channel
hardening and favorable propagation. As a result, random orthogonalization can
achieve natural over-the-air model aggregation without requiring transmitter
side channel state information (CSI) for the uplink phase of FL, while
significantly reducing the channel estimation overhead at the receiver. We
extend this principle to the downlink communication phase and develop a simple
but highly effective model broadcast method for FL. We also relax the massive
MIMO assumption by proposing an enhanced random orthogonalization design for
both uplink and downlink FL communications, that does not rely on channel
hardening or favorable propagation. Theoretical analyses with respect to both
communication and machine learning performance are carried out. In particular,
an explicit relationship among the convergence rate, the number of clients, and
the number of antennas is established. Experimental results validate the
effectiveness and efficiency of random orthogonalization for FL in massive
MIMO.
Related papers
- Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - Resource Allocation for Compression-aided Federated Learning with High
Distortion Rate [3.7530276852356645]
We formulate an optimization-aided FL problem between the distortion rate, number of participating IoT devices, and convergence rate.
By actively controlling participating IoT devices, we can avoid the training divergence of compression-aided FL while maintaining the communication efficiency.
arXiv Detail & Related papers (2022-06-02T05:00:37Z) - Over-the-Air Federated Learning with Retransmissions (Extended Version) [21.37147806100865]
We study the impact of estimation errors on the convergence of Federated Learning (FL) over resource-constrained wireless networks.
We propose retransmissions as a method to improve FL convergence over resource-constrained wireless networks.
arXiv Detail & Related papers (2021-11-19T15:17:15Z) - Joint Optimization of Communications and Federated Learning Over the Air [32.14738452396869]
Federated learning (FL) is an attractive paradigm for making use of rich distributed data while protecting data privacy.
In this paper, we study joint optimization of communications and FL based on analog aggregation transmission in realistic wireless networks.
arXiv Detail & Related papers (2021-04-08T03:38:31Z) - Federated Learning over Noisy Channels: Convergence Analysis and Design
Examples [17.89437720094451]
Federated Learning (FL) works when both uplink and downlink communications have errors.
How much communication noise can FL handle and what is its impact to the learning performance?
This work is devoted to answering these practically important questions by explicitly incorporating both uplink and downlink noisy channels in the FL pipeline.
arXiv Detail & Related papers (2021-01-06T18:57:39Z) - Distributional Reinforcement Learning for mmWave Communications with
Intelligent Reflectors on a UAV [119.97450366894718]
A novel communication framework that uses an unmanned aerial vehicle (UAV)-carried intelligent reflector (IR) is proposed.
In order to maximize the downlink sum-rate, the optimal precoding matrix (at the base station) and reflection coefficient (at the IR) are jointly derived.
arXiv Detail & Related papers (2020-11-03T16:50:37Z) - Deep Learning Based Antenna Selection for Channel Extrapolation in FDD
Massive MIMO [54.54508321463112]
In massive multiple-input multiple-output (MIMO) systems, the large number of antennas would bring a great challenge for the acquisition of the accurate channel state information.
We utilize the neural networks (NNs) to capture the inherent connection between the uplink and downlink channel data sets and extrapolate the downlink channels from a subset of the uplink channel state information.
We study the antenna subset selection problem in order to achieve the best channel extrapolation and decrease the data size of NNs.
arXiv Detail & Related papers (2020-09-03T13:38:52Z) - Millimeter Wave Communications with an Intelligent Reflector:
Performance Optimization and Distributional Reinforcement Learning [119.97450366894718]
A novel framework is proposed to optimize the downlink multi-user communication of a millimeter wave base station.
A channel estimation approach is developed to measure the channel state information (CSI) in real-time.
A distributional reinforcement learning (DRL) approach is proposed to learn the optimal IR reflection and maximize the expectation of downlink capacity.
arXiv Detail & Related papers (2020-02-24T22:18:54Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
Unmanned aerial vehicle (UAV) swarms must exploit machine learning (ML) in order to execute various tasks.
In this paper, a novel framework is proposed to implement distributed learning (FL) algorithms within a UAV swarm.
arXiv Detail & Related papers (2020-02-19T14:04:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.