Rethinking Prototypical Contrastive Learning through Alignment,
Uniformity and Correlation
- URL: http://arxiv.org/abs/2210.10194v1
- Date: Tue, 18 Oct 2022 22:33:12 GMT
- Title: Rethinking Prototypical Contrastive Learning through Alignment,
Uniformity and Correlation
- Authors: Shentong Mo, Zhun Sun, Chao Li
- Abstract summary: We propose to learn Prototypical representation through Alignment, Uniformity and Correlation (PAUC)
Specifically, the ordinary ProtoNCE loss is revised with: (1) an alignment loss that pulls embeddings from positive prototypes together; (2) a loss that distributes the prototypical level features uniformly; (3) a correlation loss that increases the diversity and discriminability between prototypical level features.
- Score: 24.794022951873156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive self-supervised learning (CSL) with a prototypical regularization
has been introduced in learning meaningful representations for downstream tasks
that require strong semantic information. However, to optimize CSL with a loss
that performs the prototypical regularization aggressively, e.g., the ProtoNCE
loss, might cause the "coagulation" of examples in the embedding space. That
is, the intra-prototype diversity of samples collapses to trivial solutions for
their prototype being well-separated from others. Motivated by previous works,
we propose to mitigate this phenomenon by learning Prototypical representation
through Alignment, Uniformity and Correlation (PAUC). Specifically, the
ordinary ProtoNCE loss is revised with: (1) an alignment loss that pulls
embeddings from positive prototypes together; (2) a uniformity loss that
distributes the prototypical level features uniformly; (3) a correlation loss
that increases the diversity and discriminability between prototypical level
features. We conduct extensive experiments on various benchmarks where the
results demonstrate the effectiveness of our method in improving the quality of
prototypical contrastive representations. Particularly, in the classification
down-stream tasks with linear probes, our proposed method outperforms the
state-of-the-art instance-wise and prototypical contrastive learning methods on
the ImageNet-100 dataset by 2.96% and the ImageNet-1K dataset by 2.46% under
the same settings of batch size and epochs.
Related papers
- Prototypical Contrastive Learning through Alignment and Uniformity for
Recommendation [6.790779112538357]
We present underlinePrototypical contrastive learning through underlineAlignment and underlineUniformity for recommendation.
Specifically, we first propose prototypes as a latent space to ensure consistency across different augmentations from the origin graph.
The absence of explicit negatives means that directly optimizing the consistency loss between instance and prototype could easily result in dimensional collapse issues.
arXiv Detail & Related papers (2024-02-03T08:19:26Z) - Supervised Contrastive Learning with Heterogeneous Similarity for
Distribution Shifts [3.7819322027528113]
We propose a new regularization using the supervised contrastive learning to prevent such overfitting and to train models that do not degrade their performance under the distribution shifts.
Experiments on benchmark datasets that emulate distribution shifts, including subpopulation shift and domain generalization, demonstrate the advantage of the proposed method.
arXiv Detail & Related papers (2023-04-07T01:45:09Z) - Siamese Prototypical Contrastive Learning [24.794022951873156]
Contrastive Self-supervised Learning (CSL) is a practical solution that learns meaningful visual representations from massive data in an unsupervised approach.
In this paper, we tackle this problem by introducing a simple but effective contrastive learning framework.
The key insight is to employ siamese-style metric loss to match intra-prototype features, while increasing the distance between inter-prototype features.
arXiv Detail & Related papers (2022-08-18T13:25:30Z) - Contrastive Learning for Fair Representations [50.95604482330149]
Trained classification models can unintentionally lead to biased representations and predictions.
Existing debiasing methods for classification models, such as adversarial training, are often expensive to train and difficult to optimise.
We propose a method for mitigating bias by incorporating contrastive learning, in which instances sharing the same class label are encouraged to have similar representations.
arXiv Detail & Related papers (2021-09-22T10:47:51Z) - Semi-supervised Contrastive Learning with Similarity Co-calibration [72.38187308270135]
We propose a novel training strategy, termed as Semi-supervised Contrastive Learning (SsCL)
SsCL combines the well-known contrastive loss in self-supervised learning with the cross entropy loss in semi-supervised learning.
We show that SsCL produces more discriminative representation and is beneficial to few shot learning.
arXiv Detail & Related papers (2021-05-16T09:13:56Z) - Doubly Contrastive Deep Clustering [135.7001508427597]
We present a novel Doubly Contrastive Deep Clustering (DCDC) framework, which constructs contrastive loss over both sample and class views.
Specifically, for the sample view, we set the class distribution of the original sample and its augmented version as positive sample pairs.
For the class view, we build the positive and negative pairs from the sample distribution of the class.
In this way, two contrastive losses successfully constrain the clustering results of mini-batch samples in both sample and class level.
arXiv Detail & Related papers (2021-03-09T15:15:32Z) - Unleashing the Power of Contrastive Self-Supervised Visual Models via
Contrast-Regularized Fine-Tuning [94.35586521144117]
We investigate whether applying contrastive learning to fine-tuning would bring further benefits.
We propose Contrast-regularized tuning (Core-tuning), a novel approach for fine-tuning contrastive self-supervised visual models.
arXiv Detail & Related papers (2021-02-12T16:31:24Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
Prototype-centered Attentive Learning (PAL) model composed of two novel components.
First, a prototype-centered contrastive learning loss is introduced to complement the conventional query-centered learning objective.
Second, PAL integrates a attentive hybrid learning mechanism that can minimize the negative impacts of outliers.
arXiv Detail & Related papers (2021-01-20T11:48:12Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.