RLM-Tracking: Online Multi-Pedestrian Tracking Supported by Relative
Location Mapping
- URL: http://arxiv.org/abs/2210.10477v1
- Date: Wed, 19 Oct 2022 11:37:14 GMT
- Title: RLM-Tracking: Online Multi-Pedestrian Tracking Supported by Relative
Location Mapping
- Authors: Kai Ren, Chuanping Hu
- Abstract summary: Problem of multi-object tracking is a fundamental computer vision research focus, widely used in public safety, transport, autonomous vehicles, robotics, and other regions involving artificial intelligence.
In this paper, we design a new multi-object tracker for the above issues that contains an object textbfRelative Location Mapping (RLM) model and textbfTarget Region Density (TRD) model.
The new tracker is more sensitive to the differences in position relationships between objects.
It can introduce low-score detection frames into different regions in real-time according to the density of object
- Score: 5.9669075749248774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of multi-object tracking is a fundamental computer vision
research focus, widely used in public safety, transport, autonomous vehicles,
robotics, and other regions involving artificial intelligence. Because of the
complexity of natural scenes, object occlusion and semi-occlusion usually occur
in fundamental tracking tasks. These can easily lead to ID switching, object
loss, detect errors, and misaligned limitation boxes. These conditions have a
significant impact on the precision of multi-object tracking. In this paper, we
design a new multi-object tracker for the above issues that contains an object
\textbf{Relative Location Mapping} (RLM) model and \textbf{Target Region
Density} (TRD) model. The new tracker is more sensitive to the differences in
position relationships between objects. It can introduce low-score detection
frames into different regions in real-time according to the density of object
regions in the video. This improves the accuracy of object tracking without
consuming extensive arithmetic resources. Our study shows that the proposed
model has considerably enhanced the HOTA and DF1 measurements on the MOT17 and
MOT20 data sets when applied to the advanced MOT method.
Related papers
- STCMOT: Spatio-Temporal Cohesion Learning for UAV-Based Multiple Object Tracking [13.269416985959404]
Multiple object tracking (MOT) in Unmanned Aerial Vehicle (UAV) videos is important for diverse applications in computer vision.
We propose a novel Spatio-Temporal Cohesion Multiple Object Tracking framework (STCMOT)
We use historical embedding features to model the representation of ReID and detection features in a sequential order.
Our framework sets a new state-of-the-art performance in MOTA and IDF1 metrics.
arXiv Detail & Related papers (2024-09-17T14:34:18Z) - UnsMOT: Unified Framework for Unsupervised Multi-Object Tracking with
Geometric Topology Guidance [6.577227592760559]
UnsMOT is a novel framework that combines appearance and motion features of objects with geometric information to provide more accurate tracking.
Experimental results show remarkable performance in terms of HOTA, IDF1, and MOTA metrics in comparison with state-of-the-art methods.
arXiv Detail & Related papers (2023-09-03T04:58:12Z) - TrajectoryFormer: 3D Object Tracking Transformer with Predictive
Trajectory Hypotheses [51.60422927416087]
3D multi-object tracking (MOT) is vital for many applications including autonomous driving vehicles and service robots.
We present TrajectoryFormer, a novel point-cloud-based 3D MOT framework.
arXiv Detail & Related papers (2023-06-09T13:31:50Z) - DORT: Modeling Dynamic Objects in Recurrent for Multi-Camera 3D Object
Detection and Tracking [67.34803048690428]
We propose to model Dynamic Objects in RecurrenT (DORT) to tackle this problem.
DORT extracts object-wise local volumes for motion estimation that also alleviates the heavy computational burden.
It is flexible and practical that can be plugged into most camera-based 3D object detectors.
arXiv Detail & Related papers (2023-03-29T12:33:55Z) - ByteTrackV2: 2D and 3D Multi-Object Tracking by Associating Every
Detection Box [81.45219802386444]
Multi-object tracking (MOT) aims at estimating bounding boxes and identities of objects across video frames.
We propose a hierarchical data association strategy to mine the true objects in low-score detection boxes.
In 3D scenarios, it is much easier for the tracker to predict object velocities in the world coordinate.
arXiv Detail & Related papers (2023-03-27T15:35:21Z) - CAMO-MOT: Combined Appearance-Motion Optimization for 3D Multi-Object
Tracking with Camera-LiDAR Fusion [34.42289908350286]
3D Multi-object tracking (MOT) ensures consistency during continuous dynamic detection.
It can be challenging to accurately track the irregular motion of objects for LiDAR-based methods.
We propose a novel camera-LiDAR fusion 3D MOT framework based on the Combined Appearance-Motion Optimization (CAMO-MOT)
arXiv Detail & Related papers (2022-09-06T14:41:38Z) - InterTrack: Interaction Transformer for 3D Multi-Object Tracking [9.283656931246645]
3D multi-object tracking (MOT) is a key problem for autonomous vehicles.
Our proposed solution, InterTrack, generates discriminative object representations for data association.
We validate our approach on the nuScenes 3D MOT benchmark, where we observe significant improvements.
arXiv Detail & Related papers (2022-08-17T03:24:36Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - Learning to Track with Object Permanence [61.36492084090744]
We introduce an end-to-end trainable approach for joint object detection and tracking.
Our model, trained jointly on synthetic and real data, outperforms the state of the art on KITTI, and MOT17 datasets.
arXiv Detail & Related papers (2021-03-26T04:43:04Z) - SoDA: Multi-Object Tracking with Soft Data Association [75.39833486073597]
Multi-object tracking (MOT) is a prerequisite for a safe deployment of self-driving cars.
We propose a novel approach to MOT that uses attention to compute track embeddings that encode dependencies between observed objects.
arXiv Detail & Related papers (2020-08-18T03:40:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.