Sequential Quantum Channel Discrimination
- URL: http://arxiv.org/abs/2210.11079v1
- Date: Thu, 20 Oct 2022 08:13:39 GMT
- Title: Sequential Quantum Channel Discrimination
- Authors: Yonglong Li, Christoph Hirche, and Marco Tomamichel
- Abstract summary: We consider the sequential quantum channel discrimination problem using adaptive and non-adaptive strategies.
We show that both types of error probabilities decrease to zero exponentially fast.
We conjecture that the achievable rate region is not larger than that achievable with POVMs.
- Score: 19.785872350085878
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We consider the sequential quantum channel discrimination problem using
adaptive and non-adaptive strategies. In this setting the number of uses of the
underlying quantum channel is not fixed but a random variable that is either
bounded in expectation or with high probability. We show that both types of
error probabilities decrease to zero exponentially fast and, when using
adaptive strategies, the rates are characterized by the measured relative
entropy between two quantum channels, yielding a strictly larger region than
that achievable by non-adaptive strategies. Allowing for quantum memory, we see
that the optimal rates are given by the regularized channel relative entropy.
Finally, we discuss achievable rates when allowing for repeated measurements
via quantum instruments and conjecture that the achievable rate region is not
larger than that achievable with POVMs by connecting the result to the strong
converse for the quantum channel Stein's Lemma.
Related papers
- Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Using adaptiveness and causal superpositions against noise in quantum
metrology [0.0]
We derive new bounds on achievable precision in the most general adaptive quantum metrological scenarios.
The bounds are proven to be saturable and equivalent to the known parallel scheme bounds in the limit of large number of channel uses.
arXiv Detail & Related papers (2022-12-15T19:43:24Z) - A hierarchy of efficient bounds on quantum capacities exploiting
symmetry [8.717253904965371]
We exploit the recently introduced $D#$ in order to obtain a hierarchy of semidefinite programming bounds on various regularized quantities.
As applications, we give a general procedure to give efficient bounds on the regularized Umegaki channel divergence.
We prove that for fixed input and output dimensions, the regularized sandwiched R'enyi divergence between any two quantum channels can be approximated up to an $epsilon$ accuracy in time.
arXiv Detail & Related papers (2022-03-04T04:34:15Z) - Reliable Simulation of Quantum Channels: the Error Exponent [5.8303977553652]
We study the error exponent of quantum channel simulation, which characterizes the optimal speed of exponential convergence.
We obtain an achievability bound for quantum channel simulation in the finite-blocklength setting.
arXiv Detail & Related papers (2021-12-08T18:55:54Z) - Towards the ultimate limits of quantum channel discrimination [18.836836815159764]
We make a conjecture on the exponentially strong converse of quantum channel hypothesis testing under coherent strategies.
We develop a framework to show the interplay between the strategies of channel discrimination, the operational regimes, and variants of channel divergences.
arXiv Detail & Related papers (2021-10-28T01:48:13Z) - Optimal Adaptive Strategies for Sequential Quantum Hypothesis Testing [87.17253904965372]
We consider sequential hypothesis testing between two quantum states using adaptive and non-adaptive strategies.
We show that these errors decrease exponentially with decay rates given by the measured relative entropies between the two states.
arXiv Detail & Related papers (2021-04-30T00:52:48Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Usefulness of adaptive strategies in asymptotic quantum channel discrimination [43.7637825272776]
We investigate the usefulness of adaptive methods in the framework of binary hypothesis testing.
There is a fundamental distinction between adaptive and non-adaptive strategies with respect to the channel uses.
We show that adaptive strategies with classical feedback do not increase the discrimination power of the channel beyond non-adaptive product input strategies.
arXiv Detail & Related papers (2020-11-12T18:40:47Z) - Ultimate limits for multiple quantum channel discrimination [0.966840768820136]
This paper studies the problem of hypothesis testing with quantum channels.
We establish a lower limit for the ultimate error probability affecting the discrimination of an arbitrary number of quantum channels.
We also show that this lower bound is achievable when the channels have certain symmetries.
arXiv Detail & Related papers (2020-07-29T03:08:48Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.